

Murilo de Sá Martin

Evaluating the Potential of Large Language

Models in Security-Related Software
Requirements Classification

Undergraduate Project Work

Undergraduate project work presented to the Undergraduate Pro-
gram in Computer Engineering of PUC-Rio in partial fulfillment
of the requirements for the degree of Bachelor in Computer En-
gineering.

Advisor: Prof. Juliana Alves Pereira

Rio de Janeiro
January 2025

Murilo de Sá Martin

Evaluating the Potential of Large Language

Models in Security-Related Software
Requirements Classification

Undergraduate project work presented to the Undergraduate Pro-
gram in Computer Engineering of PUC-Rio in partial fulfillment
of the requirements for the degree of Bachelor in Computer
Engineering. Approved by the Examination Committee.

Prof. Juliana Alves Pereira

Advisor
Departamento de Informática – PUC-Rio

Prof. Anderson Gonçalves Uchôa

Universidade Federal do Ceará – UFC

Prof.ª Daniel José Barbosa Coutinho

Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Rio de Janeiro, January 7th, 2025

de Sá Martin, Murilo

Evaluating the Potential of Large Language Models in

rilo de Sá Martin; advisor: Juliana Alves Pereira. – Rio de
Janeiro: PUC-Rio, Departamento de Informática, 2025.

v., 48 f: il. color. ; 30 cm

Projeto Final de Graduação - Pontifícia Universidade
Católica do Rio de Janeiro, Departamento de Informática.

1. Non-Functional Requirements – Teses. 2. Machine Le-

tural Language Processing – Teses. 5. Requirements Classi-
fication – Teses. 6. Engenharia de requisitos;. 7. Requisitos

9. Classificação de requisitos de segurança;. 10. Engenharia
de prompts;. 11. Aprendizado de máquina;. I. Alves Pereira,

Departamento de Informática. III. Título.

All rights reserved.

Murilo de Sá Martin

Bibliographic data

CDD: 004

Acknowledgments

I want to express my deep gratitude to my girlfriend, friends and family for

their unwavering support and understanding throughout this journey. Writing

this thesis often meant sacrificing precious moments with them, and their

patience and encouragement were fundamental in helping me persevere.

Also, I am especially thankful to my academic advisor, who not only

guided me with expertise but also understood the demanding situation I

was in—balancing work, other academic responsibilities and this research.

Her understanding and support were invaluable in helping me achieve this

milestone.

Abstract

de Sá Martin, Murilo; Alves Pereira, Juliana. Evaluating the
Potential of LLMs in the Classification of Security-
Related Software Requirements. Rio de Janeiro, 2025. 48p.
Final Undergraduate Project - Department of Informatics,
Pontifical Catholic University of Rio de Janeiro.

Effective classification of security-related software requirements is

essential for mitigating potential threats and ensuring robust system

design. This study investigates the accuracy of large language models

(LLMs) in classifying security-related requirements compared to

traditional machine learning (ML) methods. Using the SecReq and

PROMISE_exp datasets, we evaluated nine LLMs across various prompt

engineering strategies. The re- sults demonstrate that LLMs achieve high

accuracy and outperform traditional ML models in several evaluation

scenarios and that prompt engineering can significantly enhance the

model’s ability to identify security-related requirements. This work

underscores the domain-generalization capabilities of LLMs and their

potential to streamline requirements classification without the complexity

of feature engineering or dataset-specific fine-tuning often required by ML

approaches. Researchers, practitioners, and tool developers can leverage

these findings to advance automated approaches in security

requirements engineering.

Keywords

Requirements engineering; Non-functional requirements; Large

language models; Security requirements classification; Prompt

engineering; Machine learning;

Resumo

de Sá Martin, Murilo; Alves Pereira, Juliana. Avaliando o Poten-
cial de LLMs na Classificação de Requisitos de Software
Relacionados a Segurança . Rio de Janeiro, 2025. 48p. Projeto
Final de Graduação – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

A classificação eficaz de requisitos de software relacionados à

segurança é essencial para mitigar potenciais ameaças e garantir um

design de sistema robusto. Este estudo investiga a precisão dos Modelos

de Linguagem de Grande Escala (LLMs) na classificação de requisitos

relacionados à segurança em comparação com métodos tradicionais de

aprendizado de máquina (ML). Utilizando os conjuntos de dados SecReq e

PROMISE_exp, avaliamos nove LLMs em diferentes estratégias de

engenharia de prompts. Os resultados demonstram que os LLMs alcançam

alta acurácia e superam os modelos tradicionais de ML em diversos

cenários de avaliação, além de mostrar que a engenharia de prompts pode

melhorar significativamente a capacidade dos modelos de identificar

requisitos relacionados à segurança. Este trabalho destaca as capacidades

de generalização dos LLMs e seu potencial para simplificar a classificação

de requisitos sem a complexidade de engenharia de atributos ou fine-

tuning, comumente necessários em aborda- gens de ML. Pesquisadores,

profissionais e desenvolvedores de ferramentas podem aproveitar essas

descobertas para avançar em abordagens automatizadas na engenharia de

requisitos de segurança.

Palavras-chave

Engenharia de requisitos; requisitos não funcionais; Modelos de lin-

guagem de grande escala; Classificação de requisitos de segurança; Enge-

nharia de prompts; Aprendizado de máquina;

Table of contents

1 Introduction 10

2 Background and Related Work 13
2.1 Functional and Non-Functional Requirements 13
2.2 Large Language Models for Software Engineering 14
2.2.1 Prompt Engineering 15

2.3 Security Requirements Classification 16

3 Study Design 19
3.1 Research Questions 19
3.2 Study Steps 20
3.2.1 Dataset Selection 20
3.2.2 Data Preprocessing 21
3.2.3 Model Selection 22
3.2.4 Prompt Design 23
3.2.5 Model Execution 24

3.2.6 Evaluation Metrics 25

4 Results and Discussion 27

4.1 Accuracy of Zero Shot Approach (RQ1) 27
4.2 Accuracy of Different Prompting Engineering Strategies (RQ2) 28
4.3 Comparison with State-of-the-art Approaches (RQ3) 29
4.4 Threats to Validity 36

5 Conclusion and Future work 38

6 Data Availability 41

7 Appendix 42
.1 Prompting templates 42
1.1 Placeholders 42

1.2 Templates 43

Bibliography 44

Table of contents

Figure 3.1 Overview of the study methodology. 20

List of tables

Table 3.1 Characteristics of the chosen LLMs 23

Table 4.1 Acuracy by model in zero-shot approach 28
Table 4.2 Accuracy by prompting strategy and model 30
Table 4.3 Difference in accuracy by prompting strategy compared

to the baseline approach 31

Table 4.4 5 most accurate models and strategies for the SecReq
dataset 32

Table 4.5 Comparison of our results with Studies 1 and 2 for intra-
domain and cross-domain evaluation. 34

1

Introduction

Software requirements are detailed descriptions of the functions, capa-

bilities, and constraints that a software system must fulfill to meet the needs

of its users and stakeholders. They are categorized into functional require-

ments (FRs) and non-functional requirements (NFRs). FRs detail what tasks

the system must perform, while NFRs describe how a system should operate

[1]. These requirements serve as a blueprint for developers, guiding software

design, implementation, and testing.

One major challenge in managing NFRs is their inherent diversity and

complexity. There is no consensus regarding their definition, scope, level of

abstraction, granularity, priority, and inter-dependencies, making it hard for

stakeholders to identify, comprehend, and communicate about these require-

ments [36]. Among existing NFRs, security stands out as particularly critical.

In recent years, the field of Security Requirements Engineering (SRE) has at-

tracted considerable attention within the requirements engineering community

[2]. It is widely accepted that incorporating security early in the development

process is more cost-effective and leads to a more robust design [3]. Thus,

its early identification and integration would mitigate potential threats and

reduce future security-related issues. However, distinguishing security-related

requirements from other FRs and NFRs can be tedious and error-prone [38].

This study aims to investigate the accuracy of open and closed-source

LLMs in classifying security-related software requirements and compare them

with state-of-the-art Machine Learning (ML) approaches documented in the

literature. To evaluate the effectiveness of LLMs in classifying security-related

NFRs, we used two datasets: SecReq [4, 5] and a subset of the PROMISE_exp

[39] dataset. SecReq contains 510 requirements, including 187 security-related

and 323 non-security-related requirements. The PROMISE_exp subset, specif-

ically created to categorize security-related and non-security-related require-

ments, comprises 125 security-related and 844 non-security-related require-

ments.

This work differs from previous studies by focusing on the use of LLMs

for security requirements classification instead of traditional ML algorithms.

Traditional ML algorithms often require complex feature engineering, special-

Chapter 1. Introduction 11

ized skills, and significant setup effort, as well as the creation of large amounts

of labeled training data, which is time-consuming and labor-intensive and can

make them harder to adopt. In contrast, LLMs offer ease of use through nat-

ural language prompting and minimal setup effort. The simplicity and ease of

interaction enabled by NLP is a key factor that can make them well-suited for

smooth integration with agile software management tools like Jira and others,

enhancing their practicality in modern development workflows. LLMs, if proven

effective, can be integrated directly within these tools and play a pivotal role

in addressing critical security aspects early in the development process. They

enable precise task assignments by automatically identifying security-related

requirements and allocating them to team members with the appropriate ex-

pertise. This not only enhances efficiency but also fosters better collaboration

among team members, ensuring that security concerns are addressed with the

necessary focus and expertise.

The results demonstrate that, overall, LLMs are effective at accurately

identifying security-related requirements, even in a zero-shot setting. Regard-

ing the impact of prompt engineering on the evaluation metrics for each model,

most prompting strategies yielded diminishing or negligible improvements. The

notable exception was raw-inst, a combination of role and instruction prompt-

ing (see Section 2.2.1), which significantly enhanced the models’ ability in

detecting security-related requirements. Contrary to expectations, where more

complex prompts were anticipated to have a greater impact on larger models,

no clear correlation was observed between model size or version and accuracy

improvement with different prompting techniques. In fact, the most substan-

tial improvements were seen using the raw-inst technique (see Section 2.2.1)

in the smallest models from the oldest generations of the Mistral and Gemma

families, which initially exhibited the weakest results in the baseline zero-shot

approach. Mistral-nemo, the model with the highest F1_score when evaluated

on the SecReq dataset, outperformed the traditional J48 algorithm presented

in [6] in almost all scenarios, and outperformed knauss’es Bayesian classifier [7]

in cross-domain evaluations. The results highlight the potential of LLMs, par-

ticularly when combined with role-and-instruction-based prompting strategies

like raw-inst, to achieve solid accuracy in classifying security-related require-

ments. Our approach not only demonstrates better domain generalization com-

pared to the traditional ML models evaluated on the SecReq dataset but also

surpasses them in some intra-domain evaluation scenarios, without the fine-

tuning and labeling overhead commonly associated with ML models.

The contributions of this work are as follows:

– A comprehensive study of how 9 different LLMs perform when classifying

Chapter 1. Introduction 12

security requirements from 1,479 requirement specifications from the

SecReq [4, 5] and PROMISE_exp [39] datasets.

– An in-depth analysis of how prompt engineering techniques can be

applied in classifying security requirements and how they affect the

accuracy and performance of LLMs.

– A comparative evaluation against traditional ML models, highlighting

the domain-independent performance of LLMs and their potential as

viable alternatives to task-specific models.

– We have made all artifacts from our study publicly available at [8].

Audience: Researchers, practitioners, and tool builders benefit from our

experiments and insights in understanding how effective LLMs are in iden-

tifying and classifying security requirements in comparison to ML-based ap-

proaches. Furthermore, our work showcases the potential of prompt engineering

techniques in this field.

2

Background and Related Work

In this section, we define key concepts and explore related studies in the

field of software requirements engineering.

2.1

Functional and Non-Functional Requirements

The specification of software requirements is a starting point for soft-

ware development. Institute of Electrical and Electronics Engineers (IEEE)

Standard 610.12-1990 [37] defines software requirements in three ways:

1. A condition or capability needed by a user to solve a problem or achieve

an objective.

2. A condition or capability that must be met or possessed by a system or

system component to satisfy a contract, standard, specification, or other

formally imposed documents.

3. A documented representation of a condition or capability, as in (1) or (2).

Requirements can be categorized into Functional Requirements (FRs)

and Non-Functional Requirements (NFRs). FRs specify a function that a

system or system component must be able to perform [37]. While FRs are

generally easier to define, NFRs are less straightforward, as despite the term

being used for decades, there is no consensus on its definition [36]. For example,

Anton et al. [9] describe NFRs as capturing the non-behavioral aspects of a

system, while others emphasize system attributes like reliability, performance,

and security [10]; or focus on constraints that guide system operation and

development [11]. Although interpretations vary, NFRs generally describe how

a system should operate, and there is an unanimous consensus that NFRs are

important and can be critical for the success of a project [36].

Chapter 2. Background and Related Work 14

2.2

Large Language Models for Software Engineering

The rapid evolution of Large Language Models (LLMs) has been driven by

advances in deep learning, abundant computing resources, and vast training

datasets, resulting in powerful capabilities for Natural Language Processing

(NLP) tasks and broad applications across multiple fields [12]. Software

Engineering (SE) – a discipline focused on the development, implementation,

and maintenance of software systems – is one of those areas reaping the benefits

of the LLM revolution [13]. The use of LLMs in SE primarily emerges from

an innovative perspective where numerous SE challenges can be effectively

reframed into data, code, or text analysis tasks. Within SE, requirements

engineering (RE) – a critical subset focused on the identification, analysis,

and documentation of software requirements – has seen notable applications of

LLMs. A recent systematic literature review by Hou et al. [14] identifies several

tasks within the domain of requirements engineering where LLMs have been

applied. Among these tasks are anaphoric ambiguity treatment, requirements

classification, co-reference detection, and specification generation.

– Anaphoric ambiguity treatment: In requirements engineering, anaphoric

ambiguity occurs when a pronoun can plausibly refer to different en-

tities, leading to varying interpretations by different readers [15]. This

ambiguity can result in different interpretations of requirements, poten-

tially causing suboptimal software artifacts during development. Ezzini

et al. [15] and Sridhara et al. [16] have demonstrated the effectiveness of

LLMs like SpanBERT and ChatGPT in addressing anaphoric ambiguity

in software requirements.

– Requirements classification: Requirements, which stem from natural lan-

guage documents, require efficient classification, particularly for early-

stage project assessments, such as identifying security-related ones [3].

Hey et al. [17] demonstrate that NoRBERT, a model fine-tuned from

BERT, excels in classifying both functional and non-functional require-

ments, outperforming traditional methods in several tasks. Additionally,

Luo et al. [18] propose PRCBERT, a BERT-based classification method

that utilizes flexible prompt templates. It achieves accurate requirements’

classification for zero-shot scenarios.

– Co-reference detection: Co-reference in Requirements Engineering occurs

when different expressions in a requirements document refer to the same

system component. If co-references are not resolved, it can lead to ambi-

guity or misinterpretation of the requirements, causing confusion about

Chapter 2. Background and Related Work 15

what is being described. Wang et al. [19] propose a fine-tuned version of

BERT that accurately detects co-reference in software requirements.

– Specification generation: Specification generation involves creating for-

mal program specifications that define the behavior and functionality of

software systems. Manually crafting these specifications is particularly

challenging for complex programs, as they must capture all semantic de-

tails of the code accurately. Ma et al. [20] introduce SpecGen, a novel

technique leveraging LLMs to successfully generate verifiable specifica-

tions for most of the programs evaluated in their study. Xie et al. [21]

conducted experiments on state-of-the-art LLMs, evaluating their per-

formance and cost-effectiveness for specification generation, and found

that certain open-source models achieve high effectiveness in specifica-

tion generation and not only outperform traditional approaches, but also

surpass larger, more expensive closed-source LLMs.

2.2.1

Prompt Engineering

Prompt engineering has become a vital technique for expanding the abili-

ties of LLMs. This technique utilizes task-specific instructions, called prompts,

to improve model accuracy without altering the core model parameters. In-

stead of adjusting these parameters, prompts enable pre-trained models to be

smoothly applied to downstream tasks by triggering desired behaviors based

solely on the prompt provided [22].

There are various prompting techniques, ranging from simple to complex,

and no universally "best" technique exists. The effectiveness of a technique

depends on the specific task. Simpler prompting techniques may work better

for straightforward tasks, whereas more complex tasks often require additional

effort from the user to craft detailed and nuanced prompts. Sahoo et al. [22]

conducted a systematic survey of prompt engineering, categorizing various

prompting strategies according to their suitability for different task domains.

OpenAI provides a page on prompt engineering in its documentation1, where

six strategies for achieving better results with their models are explained.

Unlike most academic papers, this documentation targets a broader audience,

not necessarily academics or researchers, and thus employs simpler, more

accessible language. While it does not provide metrics on how each technique

affects model accuracy and is less rigorous than academic papers, the page

covers several important prompting techniques referenced in the literature.

Common prompting techniques from the literature include:

1https://platform.openai.com/docs/guides/prompt-engineering

Chapter 2. Background and Related Work 16

– zero_shot: This technique [23] eliminates the need for extensive training

data, relying instead on carefully crafted prompts that guide the model

toward novel tasks based solely on the model’s pre-existing knowledge.

– few_shot: This technique involves giving a model a few examples of a task

at the time of use. The model then uses these examples to understand and

complete a new, similar task, which reduces the need for large amounts

of task-specific data [24].

– Manual Chain-of-Thought (CoT) Prompting: This technique provides

language models with the ability to generate a coherent series of in-

termediate reasoning steps that lead to the final answer for a problem.

The idea is that LLM can generate chains of thought if demonstrations

of chain-of-thought reasoning are provided in the exemplars for few-shot

prompting [25].

– Automatic Chain-of-Thought (auto-CoT) Prompting: Instead of writing

manual reasoning demonstrations one by one for each example as in

Manual-CoT, auto-CoT leverages a simple prompt like “Let’s think step

by step” to facilitate step-by-step thinking before answering a question

[26].

– Role Prompting: This technique involves providing the model with a

specific role in the prompt. The assigned role offers context about the

LLM’s identity and background, enabling it to generate more natural, in-

character responses tailored to that role [27]. Clavie et al. [28] explored

combining role instructions with detailed task instructions, referring to

this approach as raw-inst.

2.3

Security Requirements Classification

To develop secure and reliable software systems, security requirements

must be analyzed with caution [38]. There are several works in the literature

that use ML and Deep Learning (DL) solutions to identify and classify security

requirements [7, 6, 38].

Knauss et al. [7] introduced a tool-supported method to identify and

categorize security requirements using a Bayesian classifier. They used the

SecReq dataset and, according to their experiments, their approach succeeds

in assisting requirements engineers in the task of identifying security-relevant

requirements. It identifies the majority of the security-relevant requirements,

achieving a recall greater than 0.9 and maintaining a precision exceeding 0.8,

Chapter 2. Background and Related Work 17

indicating only a few false positives. These results were observed when the

models were trained and evaluated within the same specification domain.

Security requirements are often mixed with other types of requirements.

Thus, many existing methods do not deliver the expected efficiency due to

their domain-dependency [38]. To address this limitation, Li [6] proposed a

hybrid method for identifying security requirements that combines linguistic

analysis with ML. Their approach first revises a conceptual model of security

requirements by defining linguistic rules and security keywords from literature.

This definition guides the extraction of features for training classifiers using

standard ML algorithms. They evaluated the method using a combination

of different subsets of the Industry requirements specifications in the SeqReq

dataset. Although their approach achieves a good average precision and recall

across all tested subsets (0.79 and 0.75, respectively), the benchmark approach

– Bayesian classifier trained by Knauss et al. [7] on the same dataset –

demonstrates superior accuracy, with an average precision of 0.83 and recall of

0.92. Nonetheless, the classifiers developed by their approach show promising

potential for generalization to other domains, achieving an average precision

of 0.69 and recall of 0.64 in cross-dataset evaluation, while the benchmark

approach achieved an average precision of 0.51 and recall of 0.53.

Armin Kobilica et al. [38] conducted an empirical study evaluating the

effectiveness of 22 supervised ML classifiers and 2 deep learning approaches,

using the SecReq dataset. Their approach minimized the typical overhead of

linguistic and semantic preprocessing by applying simpler text preprocessing

techniques. They apply word encoding for most classifiers and word embedding

for CNN-based models. The results indicated that the Long Short-Term

Memory (LSTM) network achieved the highest accuracy among deep learning

models at 84%, while Boosted Ensemble led the supervised classifiers with an

accuracy of 80%,demonstrating the strength of simplified preprocessing paired

with robust algorithms.

Although existing solutions leveraging ML and DL for security-related

requirements classification have shown promising results, they also exhibit cer-

tain limitations. One of the main challenges lies in their domain dependency;

these models often rely on features or data specific to particular contexts, lim-

iting their applicability across diverse projects. Additionally, such approaches

often involve significant overhead, including the need for fine-tuning models,

labeling data, and configuring parameters—all of which require considerable

expertise and effort.

In contrast, LLMs present a more versatile and user-friendly alternative.

Unlike traditional ML or DL approaches, LLMs are not domain-dependent,

Chapter 2. Background and Related Work 18

enabling broader applicability without extensive customization. Moreover,

their ability to process natural language prompts eliminates the need for

complex configurations or fine-tuning, making them significantly easier to

deploy. These advantages position LLMs as a practical solution for addressing

the challenges of security-related requirements’ classification, particularly in

scenarios where domain generalization and usability are critical.

3

Study Design

This study aims to investigate the effectiveness and applicability of

LLMs for classifying security requirements, focusing specifically on the context

of requirement specification documents at the software design stage. Given

the specialized language in the developer description of these documents,

our goal is to determine whether LLMs can reach a higher accuracy than

traditional ML-based approaches and to understand how prompt engineering

could improve their performance.

3.1

Research Questions

Based on our aim, this study is guided by three research questions (RQs),

as follows:

RQ1 What is the accuracy of LLMs in distinguishing security-related require-

ments from non-security requirements in a zero-shot approach?

RQ2 How do different prompting strategies change the accuracy of LLMs in

classifying security-related requirements?

RQ3 How does the accuracy of LLMs compare to the accuracy of models

reported in studies from the literature?

RQ1 evaluates the baseline accuracy of LLMs when no additional task-

specific data is provided. The goal is to assess their capability to classify

security-related requirements based solely on general pre-trained knowledge

without any further fine-tuning or task-specific training. We will evaluate the

models using a zero-shot prompting strategy (see Section 3.2.4). The model’s

predictions will be compared to the ground truth labels, and metrics such

as precision, recall, and F1 score will be calculated to assess accuracy. RQ2

investigates whether and how varying the way instructions (prompts) are

presented to the LLM affects its classification accuracy. We used 3 additional

prompt engineering strategies (see Section 3.2.4). Each strategy was evaluated

on the same dataset, and the accuracy metrics were compared to identify the

most effective approach. RQ3 aims to benchmark the accuracy of LLMs against

existing ML-based models specifically developed for classifying security-related

Chapter 3. Study Design 20

requirements, as reported in prior research. We identified relevant studies that

have addressed similar classification tasks. Then, we compared key metrics

(precision, recal and F1-score) of these studies. The LLM’s accuracy, evaluated

in RQ1 and RQ2, was analyzed to determine whether LLMs can serve as viable

alternatives or if task-specific models still outperform them in this domain.

3.2

Study Steps

Our study consists of seven steps, which are illustrated in Figure 3.1.

They are also described in the following sections.

Figure 3.1: Overview of the study methodology.

3.2.1

Dataset Selection

One major challenge in the field of software requirements engineering is

the lack of publicly available, high-quality datasets [29]. This scarcity of reliable

data limits the development and evaluation of models designed for tasks

such as requirements classification. In this paper, we leverage two datasets,

PROMISE_exp [39] and SecReq [4, 5], to support the classification of security-

related requirements.

The PROMISE_exp dataset, developed by Márcia Lima [39], is an

expanded version of the publicly available PROMISE dataset, originally hosted

in the PROMISE dataset repository and introduced in studies such as [34]

and [35]. While the original PROMISE dataset contains 625 labeled software

requirements from 15 different projects, PROMISE_exp increases the number

Chapter 3. Study Design 21

of requirements to 969 by incorporating 34 new projects into the dataset.

These requirements are categorized into several types, including Availability

(A), Fault Tolerance (FT), Legal (L), Look & Feel (LF), Maintainability

(MN), Operational (O), Performance (PE), Portability (PO), Scalability (SC),

Security (SE), Usability (US), and Functional (F). The expanded dataset

includes 125 security-related requirements, with the remaining 844 categorized

as non-security-related to form the security-focused subset used in this study.

The expansion process involved structured web searches based on the keyword

"Software Requirement Specification", manual analysis of the search results,

and extraction of textual requirements in English. Structural compatibility

with the original dataset was carefully maintained, ensuring continuity for

researchers who previously worked with the original PROMISE dataset.

SecReq is a dataset developed by Schneider et al. [4, 5], comprising

510 requirements, of which 187 are security-related. The dataset includes

three industry standards: Common Electronic Purse (ePurse) with 124 labeled

entries, Customer Premises Network (CPN) with 210 labeled entries, and

Global Platform Specification (GP) with 176 labeled entries. The requirements

are manually labeled by experts as either "sec" (security-related) or "non-sec"

(non-security-related).

3.2.2

Data Preprocessing

Given that more than a thousand requirements need to be evaluated, with

each requirement assessed multiple times, establishing an automated testing

pipeline is essential. The PROMISE_exp dataset is in .arff format, while the

SecReq dataset is in .csv format. A Python script was developed to extract

each requirement along with its corresponding label, consolidating them into

a unified JSON file. The JSON file contains an array of objects, where each

object represents a requirement with the following fields:

– project_id: Identifier for the project. The PROMISE_exp dataset al-

ready had project identifiers, ranging from 1 to 49, and these were main-

tained. The three industry standards (CPN, ePurse, and GPS) in the

SecReq dataset received the IDs 50, 51, and 52, respectively.

– requirement: The text of the requirement.

– label: The classification of the requirement, either "sec" (security-related)

or "nonsec" (non-security-related).

– source: The origin of the requirement, such as "PROMISE_exp" or

"secreq".

Chapter 3. Study Design 22

During data processing, one entry was found to be invalid in the SecReq

dataset. While most requirements are labeled as "sec" or "nonsec", one had

an erroneous label, "XYZ". This entry was removed from the consolidated

JSON file. After processing the data, the consolidated dataset had 1,167 nonsec

instances (78.9%) and 312 sec instances (21.1%).

3.2.3

Model Selection

The field of LLMs is advancing rapidly, with new, cutting-edge models

emerging on a monthly basis. This continuous innovation makes it a highly

dynamic period for artificial intelligence and LLM research. Given the large

number of available models, careful selection was necessary for this study.

Our pool of models consists of 4 families: Gemma, Mistral, Llama and

GPT. In terms of popularity, the first three chosen families of models –

Gemma, Mistral, and Llama – are part of the top 20 most popular (in terms of

downloads) families of LLM available in hugging face1. Due to cost concerns,

we initially did not plan to test any closed-source models. However, during the

development of this study, the release of the GPT-4o mini model—promising

exceptional affordability and speed—prompted its inclusion in our pool of

tested models. The GPT-4o mini model represented a true paradigm shift

in cloud LLM usage, with reports indicating that the number of active users

in OpenAI APIs doubled after its release [30].

The inclusion of both open-source and closed-source models allowed us

to explore their contrasting characteristics. While closed-source models are

typically executed through cloud-based APIs, which offload the computational

overhead to the provider’s infrastructure, open-source models can be deployed

locally, granting users full control over their execution environment. Closed-

source models benefit from managed services, including uptime guarantees,

automatic updates, and scalability, enabling developers to focus solely on uti-

lizing the API. However, this reliance comes with drawbacks, such as potential

privacy concerns, data dependence on the provider, and the ongoing opera-

tional costs associated with API usage. In contrast, open-source models, when

deployed locally, require users to handle the hardware setup, maintenance, and

updates but offer enhanced data privacy, customization, and cost predictabil-

ity. In our case, the closed-source cloud-deployed model utilized was GPT-4o

mini, which provided all the advantages mentioned previously with minimal

drawbacks. For our use case, there were no privacy concerns, and the cost of

1https://huggingface.co/models?pipeline_tag=text-generation&sort=
downloads

https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads
https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads

Chapter 3. Study Design 23

the cloud-based service was extremely low. On the other hand, the locally de-

ployed LLMs were free to use but required significant computational resources

and substantially more time to run all the prompts.

Table 3.1 describes the names and characteristics of the nine models

selected in this study. In terms of scalability, all models chosen are available

in different variations, which mainly affect parameter count and performance,

especially inference speed and memory requirements. A higher parameter count

can also be associated with higher reasoning capabilities. For each model, we

selected the configuration with the highest parameter count that our setup

could support. The models tested in this study ranged from 7 billion to 27

billion parameters. Approximately 10 billion parameters is generally considered

the cutoff for a “small” language model [31]. While OpenAI does not disclose

the exact parameter count of GPT-4o mini, it is described as a "small model"

on their website [32]. However, without additional details, it remains unclear

whether GPT-4o mini falls below this 10 billion parameter threshold.

Table 3.1: Characteristics of the chosen LLMs

Name Parameters
(in billions)

Size
(GB)

License Type

Llama 3 8 4.7 Open Source

Llama 3.1 8 4.9 Open Source

Llama 3.2 - Vision 11 7.9 Open Source

Mistral 7.25 4.1 Open Source

Mistral-Nemo 12 7.1 Open Source

Mistral-Small 22 12.0 Non-commercial use only

Gemma 7 5.0 Open Source

Gemma2 27 15.0 Open Source

GPT-4o mini - - Closed Source

3.2.4

Prompt Design

In terms of prompt design, we began with the zero-shot prompt, which

served as the baseline for RQ1. For RQ2 and RQ3, we additionaly selected

3 prompting strategies: few-shot, auto-CoT, and raw-inst (see Section 2.2.1).

These strategies were chosen based on their simplicity, making them straight-

forward to implement in practical scenarios, and their frequent use in prior

studies [23, 24, 26, 27, 28] .

The evaluation involved testing multiple prompting strategies across

thousands of software requirement specifications, making it essential to auto-

mate prompt generation. To address this, we developed a script that functioned

Chapter 3. Study Design 24

as a prompt factory, dynamically injecting requirements from our consolidated

file (Step 2 in Figure 3.1) into predefined templates.

Every prompt template instructs the model to classify a given require-

ment as either security-related or non-security-related. Another common fea-

ture across all prompts is the inclusion of an answer template, essential for

automating evaluation and ensuring output consistency by specifying the re-

sponse format in JSON. The rest of the prompt’s structure varies depending on

the strategy used. The zero-shot prompt (Appendix .1.2, Item 1) has the sim-

plest structure, including only the requirement, task specification, and answer

template, with no additional information provided. For the few-shot prompt2

(Appendix .1.2, Item 2), where we provide a set of examples for the model,

markers like “user_x” and “response_x” distinguish each example, guiding the

model to follow a consistent pattern. In the auto-CoT prompts (Appendix .1.2,

Item 3), additional instructions prompt the model to think through its response

in structured steps before delivering the final answer, encouraging a reasoning-

driven approach. For the raw-inst prompt (Appendix .1.2, Item 4), the model

is provided with a detailed description of its role and the task to be performed.

3.2.5

Model Execution

We decided to use two providers to run the selected LLMs: OpenAI3

(cloud-based) and Ollama4 (local). We use Ollama tool to deploy Llama

3, llama3.1, and llama3.2-vision (from Meta), Mistral, Mistral-Nemo, and

Mistral-Small (from Mistral AI), Gemma, and Gemma2 (from Google). The

OpenAI API was used to deploy the GPT-4o mini.

The locally-deployed LLMs were executed in a computer with the fol-

lowing specifications: AMD Ryzen 5 5600X 6-Core Processor, 16GB of RAM

and an NVIDIA GeForce RTX 3060 GPU, with 12GB of VRAM. We tune the

model to be as deterministic as possible experimenting with different parame-

ters and using temperature=0, thus removing the need for multiple runs using

each prompt.

2In our implementation of the few-shot strategy, we provided one example from each
class (security-related and non-security-related). Note that it could be considered a "one-
shot" approach by some authors.

3https://openai.com/index/openai-api
4https://ollama.com

https://openai.com/index/openai-api
https://ollama.com/

Chapter 3. Study Design 25

+

+

3.2.6

Evaluation Metrics

We will utilize the confusion matrix and its derived metrics to compare

the various prompts and models evaluated in this study. The confusion matrix

is a table summarizing the model’s predictions compared to the actual labeled

instances as "sec" or "nonsec". The confusion matrix can be represented as

follows:

 Predicted "sec" Predicted "nonsec"

Actual "sec" True Positive (TP) False Negative (FN)

Actual "nonsec" False Positive (FP) True Negative (TN)

Where:

– True Positive (TP): Instances where the predicted requirement is

classified as security-related, and it is also labeled for experts as security-

related.

– False Positive (FP): Instances where the model incorrectly predicts a

requirement as security-related, but it is labeled as non-security-related.

– False Negative (FN): Instances where the model fails to predict a

requirement as security-related, even though it is actually labeled as

security-related.

– True Negative (TN): Instances where the model correctly predicts a

requirement as non-security-related, and it is also labeled by experts as

non-security-related.

Several important metrics are derived from the confusion matrix:

Precision Precision is the proportion of correctly predicted positive instances

out of all instances predicted as positive:

Precision =
TP

TP FP

Recall Recall, also known as sensitivity, is the proportion of actual positive

instances that were correctly identified by the model:

Recall =
TP

TP FN

Chapter 3. Study Design 26

F1-Score The F1-score is the harmonic mean of precision and recall, balanc-

ing the trade-off between these metrics:

Precision × Recall

Precision + Recall

These metrics, derived from the confusion matrix, enable a detailed

evaluation of the models’ accuracy and facilitates the comparison of different

LLMs, prompting strategies and ML models in Section 4.

We utilized Python scripts (available as part of the replication pack-

age [8]) that leveraged the pandas library5 to analyze the output of the LLMs

in terms of these metrics.

5https://pandas.pydata.org/

F1-Score = 2 ×

https://pandas.pydata.org/

4

Results and Discussion

In this section, we discuss the results of the research questions defined in

Section 3.

4.1

Accuracy of Zero Shot Approach (RQ1)

Table 4.1 presents the precision, recall and F1-score for the nine models

evaluated on their ability to classify security-related requirements using the

baseline prompting approach, zero-shot. Overall, all models exhibited high

recall but struggled with precision, reflecting their strong ability to identify

true positives while often misclassifying false positives. F1-scores varied widely,

ranging from 0.38 to 0.77, highlighting the models’ varying abilities to balance

these metrics.

Among the models, mistral-nemo stood out with the highest F1-score of

0.77, driven by its strong precision (0.69) and recall (0.88), showcasing supe-

rior capability in identifying security-related requirements. Mistral-small and

mistral achieve comparable results, both with F1-scores of 0.70 and high re-

call (0.97–0.98). Llama3, Llama3.1 and llama3.2-vision followed closely, with

F1-scores ranging from 0.72 to 0.73, demonstrating balanced ability in iden-

tifying security-related requirements. These models maintain strong precision

(0.58–0.60) and recall (0.93–0.96), indicating they are reliable classifiers with

balanced results. At the other end of the spectrum, gemma recorded the low-

est F1-score of 0.38, driven by its extremely low precision (0.23), revealing a

tendency to over-classify instances as sec and introduce more false positives.

The cloud-based model, GPT-4o-mini, achieved a F1-score of 0.70. Its

F1-score is competitive with other well-performing models like Llama3 and

Mistral variants, making it a strong candidate for scenarios where maximizing

recall is critical. However, it does not match the balance achieved by Mistral-

nemo, which delivers both higher precision and F1-score. As GPT-4o-mini

tends to sacrifice precision (0.55), it may not be the ideal choice when false

positives carry a significant cost. Thus, leading to require additional manual

verification to confirm the classifications.

Chapter 4. Results and Discussion 28

model

precision recall f1-score

gemma 0.23 1.00 0.38

gemma2 0.51 0.97 0.67

gpt-4o-mini 0.55 0.99 0.70

llama3 0.58 0.96 0.72

llama3.1 0.60 0.93 0.73

llama3.2-vision 0.60 0.95 0.73

mistral 0.52 0.97 0.68

mistral-nemo 0.69 0.88 0.77

mistral-small 0.55 0.98 0.70

Table 4.1: Acuracy by model in zero-shot approach

4.2

Accuracy of Different Prompting Engineering Strategies (RQ2)

Table 4.2 summarizes the accuracy (precision, recall and F1-score) for

the nine models and three additional prompting strategies investigated in this

research question.

Few-shot. This technique generally underperformed compared to the base-

line (zero-shot) approach, with an average F1-score difference of -0.09 (see

Table 4.3). Only one model, gemma, which had the poorest accuracy in the

zero-shot approach, showed improvement, but its F1-score (0.43) remained be-

low competitive levels. For all other models, precision and recall worsened, with

some experiencing an F1-score drop of up to 0.20, underscoring the limitations

of this strategy for this task.

Auto-CoT. The auto-CoT technique showed limited impact on the models’

overall accuracy. Changes in F1-score were minimal, ranging from a negligible

increase (+0.01 for mistral-nemo) to a slight decrease (-0.06 for gemma2),

resulting in an average difference of -0.02 (see Table 4.3). Mistral-nemo, the

most effective model in RQ1, exhibited a marginal improvement, achieving an

Finding 1. Mistral-nemo emerged as the most effective model in the

zero-shot approach, with the Llama3 series delivering consistently strong

results.

Chapter 4. Results and Discussion 29

Finding 2. Most prompting strategies did not enhance the models’ ability

to classify security-related requirements. However, the raw-instruction

prompting strategy proved to be the most effective, with every model

showing an increase in F1-score and an average F1-score improvement

of +0.09.

F1-score of 0.78. However, the improvements were insufficient to make auto-

CoT a compelling strategy for enhancing classification effectiveness.

Raw-inst. This technique had the most substantial impact on the effective-

ness of the models. The F1-score differences ranged from +0.19 to +0.03, with

an average of +0.09 (see Table 4.3). Apart from gemma, all models achieved

accuracy comparable to or exceeding the most-accurate model from RQ1. Mis-

tral emerged as the top performer under this strategy, achieving an F1-score of

0.82, driven by high precision (0.77) and recall (0.88). GPT-4o-mini followed

closely, with an F1-score of 0.81, supported by a precision of 0.70 and recall

of 0.96. Mistral-small also demonstrated a strong balance between precision

(0.82) and recall (0.79), resulting in an F1-score of 0.80. These results highlight

raw-inst as a promising approach for improving model accuracy.

4.3

Comparison with State-of-the-art Approaches (RQ3)

Mistral-nemo with the raw-inst technique, which proved to be the most

effective on the SecReq dataset, was defined as our baseline (see Table 4.4). We

compare the accuracy of the baseline model to two studies [7, 6] that utilized

state-of-the-art ML models for the same task.

Chapter 4. Results and Discussion 30

precision recall f1-score

strategy model

few-shot gemma 0.27 1.00 0.43
 gemma2 0.43 1.00 0.60
 gpt-4o-mini 0.49 0.99 0.65
 llama3 0.39 1.00 0.56
 llama3.1 0.36 1.00 0.53
 llama3.2-vision 0.40 0.99 0.57
 mistral 0.44 1.00 0.61

auto-CoT

mistral-nemo
mistral-small
gemma

0.55
0.50
0.23

0.95
0.99

1.00

0.69
0.67
0.38

 gemma2 0.45 0.98 0.61
 gpt-4o-mini 0.54 0.98 0.70
 llama3 0.56 0.96 0.71
 llama3.1 0.52 0.96 0.68
 llama3.2-vision 0.54 0.96 0.69
 mistral 0.50 0.98 0.67

raw-inst

mistral-nemo
mistral-small
gemma

0.71
0.54
0.40

0.87
0.99

0.99

0.78
0.70
0.57

 gemma2 0.67 0.94 0.78
 gpt-4o-mini 0.70 0.96 0.81
 llama3 0.66 0.95 0.78
 llama3.1 0.64 0.94 0.76
 llama3.2-vision 0.63 0.95 0.76
 mistral 0.77 0.88 0.82
 mistral-nemo 0.82 0.79 0.80
 mistral-small 0.68 0.94 0.79

Table 4.2: Accuracy by prompting strategy and model

Chapter 4. Results and Discussion 31

precision diff recall diff f1 diff

strategy model

few-shot gemma 0.04 0.00 0.05
 gemma2 -0.08 0.03 -0.07
 gpt-4o-mini -0.06 0.00 -0.05
 llama3 -0.19 0.04 -0.16
 llama3.1 -0.24 0.07 -0.20
 llama3.2-vision -0.20 0.04 -0.16
 mistral -0.08 0.03 -0.07
 mistral-nemo -0.14 0.07 -0.08

 mistral-small -0.05 0.01 -0.03
Average -0.11 0.03 -0.09

auto-CoT gemma 0.00 0.00 0.00
 gemma2 -0.06 0.01 -0.06
 gpt-4o-mini -0.01 -0.01 0.00
 llama3 -0.02 0.00 -0.01
 llama3.1 -0.08 0.03 -0.05
 llama3.2-vision -0.06 0.01 -0.04
 mistral -0.02 0.01 -0.01

mistral-nemo 0.02 -0.01 0.01

 mistral-small -0.01 0.01 0.00
Average -0.03 0.01 -0.02

raw-inst gemma 0.17 -0.01 0.19
 gemma2 0.16 -0.03 0.11
 gpt-4o-mini 0.15 -0.03 0.11
 llama3 0.08 -0.01 0.06
 llama3.1 0.04 0.01 0.03
 llama3.2-vision 0.03 0.00 0.03
 mistral 0.25 -0.09 0.14
 mistral-nemo 0.13 -0.09 0.03

 mistral-small 0.13 -0.04 0.09
Average 0.13 -0.03 0.09

Table 4.3: Difference in accuracy by prompting strategy compared to the
baseline approach

Chapter 4. Results and Discussion 32

model strategy precision recall f1-score

mistral-nemo raw-inst 0.79 0.84 0.82
gpt-4o-mini raw-inst 0.69 0.96 0.80
mistral raw-inst 0.72 0.88 0.80
gemma2 raw-inst 0.66 0.94 0.77

llama3 raw-inst 0.63 0.94 0.76

Table 4.4: 5 most accurate models and strategies for the SecReq dataset

Chapter 4. Results and Discussion 33

Table 4.5 presents a comparative analysis of the precision, recall, and

F1-score metrics from Studies 1 [7] and 2 [6] alongside the results of our study.

For Studies 1 and 2, the table includes performance metrics under two distinct

evaluation scenarios:

– Intra-domain evaluation, where the models were trained and tested

within the same specification domain, providing insights into their accu-

racy in a controlled and consistent context.

– Cross-domain evaluation, where the models were tested on data from

different domains, showcasing their generalizability. Both the best-case

and worst-case accuracy metrics are reported to capture the variability

and robustness of the models across diverse datasets.

This comparative approach highlights the strengths and limitations of

each study, emphasizing how domain-specific or cross-domain factors influence

the effectiveness of the classification models.

Study 1, conducted by Knauss et al. [7], reported strong results, with F1-

scores of 0.88 for the ePurse specification, 0.86 for the GP specification, and

0.96 for the CPN specification for the intra-domain evaluation (see Table 4.5).

However, F1-score dropped significantly for cross-domain evaluations. For the

ePurse specification, the F1-score dropped to 0.58 in the best-case scenario and

further decreased to 0.47 in the worst-case scenario. For the GP specification,

the F1-score dropped to 0.57 and 0.23 in the best and worst-case scenarios,

respectively. For the CPN specification, the F1-score fell sharply to 0.40 in the

best-case scenario and 0.33 in the worst-case scenario

Study 2, conducted by Li [6], achieved an F1-score of 0.82 for the ePurse

specification, 0.74 for the GP specification and 0.73 for the CPN specification

for the intra-domain evaluation (see Table 4.5). Similar to Study 1, F1-

score generally dropped when evaluating models trained on other specification

domains, i.e. cross-domain evaluations. However, for the ePurse specification,

the F1-score increased to 0.88 in the best-case scenario and decreased to 0.65

in the worst-case scenario. For the GP specification, the F1-score dropped to

0.61 and 0.29 in the best and worst-case scenarios, respectively. For the CPN

specification, the F1-score dropped to 0.63 in the best-case scenario and 0.6 in

the worst-case scenario.

Chapter 4. Results and Discussion 34

Specification Study Precision Recall F1-score

Ours 0.98 0.77 0.86
Study 1 (intra-domain) 0.83 0.93 0.88
Study 1 (cross-domain best case) 0.72 0.48 0.58

ePurse Study 1 (cross-domain worst case) 0.99 0.33 0.47
Study 2 (intra-domain) 0.90 0.75 0.82
Study 2 (cross-domain best case) 0.94 0.82 0.88

Study 2 (cross-domain worst case) 0.95 0.49 0.65

Ours 0.71 0.95 0.82
Study 1 (intra-domain) 0.81 0.92 0.86
Study 1 (cross-domain best case) 0.43 0.85 0.57

GP Study 1 (cross-domain worst case) 0.29 0.19 0.23
Study 2 (intra-domain) 0.79 0.70 0.74
Study 2 (cross-domain best case) 0.50 0.78 0.61

Study 2 (cross-domain worst case) 0.85 0.17 0.29

Ours 0.68 0.83 0.75

Study 1 (intra-domain) 0.98 0.95 0.96
Study 1 (cross-domain best case) 0.29 0.65 0.40

CPN Study 1 (cross-domain worst case) 0.23 0.54 0.33
Study 2 (intra-domain) 0.76 0.71 0.73
Study 2 (cross-domain best case) 0.52 0.78 0.63

Study 2 (cross-domain worst case) 0.50 0.76 0.60

Table 4.5: Comparison of our results with Studies 1 and 2 for intra-domain
and cross-domain evaluation.

Chapter 4. Results and Discussion 35

Study 1 achieved high scores when models were trained and tested

on the same dataset, outperforming our approach in all specifications. The

differences in F1-scores were small for the ePurse and GP specifications (0.02

and 0.04, respectively), but considerable for the CPN specification (0.21).

Their results dropped significantly in cross-domain evaluations, whereas our

approach achieved higher F1-scores across all specifications by a large margin.

The difference in F1-scores in the best-case scenario was 0.28 for the ePurse

specification, 0.25 for the GP specification, and 0.35 for the CPN specification.

Our approach also outperformed Study 2 in most cases. In the intra-domain

evaluation scenario, the F1-score of our model surpassed theirs by 0.04 for

the ePurse specification, 0.08 for the GP specification, and 0.02 for the CPN

specification. In the cross-domain evaluation scenario, considering the best-

case scenario, our model had a lower F1-score for the ePurse specification

(0.86 compared to 0.88), but higher F1-scores for the GP specification (0.82

compared to 0.61) and for the CPN specification (0.75 compared to 0.63).

Overall, one major limitation of state-of-the-art techniques is that ML-

based models often require retraining for each new dataset to adapt to its

specific characteristics and requirements. This retraining process requires a

substantial amount of manual effort to label the requirements in the new

dataset, introducing additional time and cost burdens. Moreover, the need

for domain expertise during the labeling process can further increase the

complexity and expense. The reliance on fine-tuning also makes cross-domain

approaches less flexible and scalable, as each dataset essentially demands a

custom model configuration.

In contrast, LLMs excel in this aspect, as they can operate effec-

tively without fine-tuning. Leveraging their pre-trained knowledge, LLMs have

demonstrated impressive results across various specifications, often surpassing

traditional approaches in both accuracy for cross-domain evaluations and ease

of deployment. This eliminates the need for dataset-specific training, signifi-

cantly reducing the manual overhead and cost associated with traditional ML

techniques. Furthermore, ML techniques are prone to overfitting to the train-

ing data, which can lead to a steep decline in accuracy when models encounter

datasets with varying structures or terminology. These limitations highlight the

practical challenges of state-of-the-art techniques, reinforcing the advantages

of LLMs in providing robust, cost-effective, and scalable solutions.

Chapter 4. Results and Discussion 36

4.4

Threats to Validity

The validity of this study is influenced by several factors that could im-

pact the reliability and generalizability of the findings. This section highlights

potential threats to validity and reflects on the measures taken to mitigate

them, as well as the limitations that remain.

Internal validity. Internal validity relates to whether the results accurately

reflect the performance of the evaluated models, independent of external

influences. The study relied only on two datasets, PROMISE_exp and SecReq.

We knowledge that limitations in the data quality and labeling could have

introduced biases that affected the evaluation results. To mitigate such threat

to the validity of our results, these datasets were selected due to their extensive

use in prior research and their established reputation for robustness and

reliability. Their use also supports the reproducibility of our findings, as they

provide a common ground for comparison with other works in the literature.

Moreover, requirements from both datasets were provided sequentially within

the same session, potentially allowing the models to carry context or learn

patterns from one dataset that might influence its performance on the other.

Although responses were later isolated to evaluate performance on specific

datasets, the sequential prompting approach may have inadvertently affected

the model’s behavior during evaluation. Additionally, the study tested a limited

number of prompting strategies.While these strategies were adequate for initial

evaluation, the rapid development of LLMs has introduced an ever-growing

pool of possible prompts and techniques that were not explored in this study.

This limitation suggests that a broader variety of prompting strategies could

yield different or more comprehensive insights into the models’ capabilities.

Expanding the range of prompts considered in future research could mitigate

this limitation and enhance the robustness of the evaluation.

Finding 3. LLMs can serve as viable alternatives to task-specific state-of-

the-art ML models. Our approach outperforms both state-of-the-art mod-

els in terms of F1-score across most specifications and evaluation scenar-

ios. It demonstrates more robust and less domain-dependent performance

compared to prior studies, yielding results comparable to those of domain-

specific models.

Chapter 4. Results and Discussion 37

External validity. External validity pertains to the generalizability of the

study’s findings to real-world contexts, beyond the specific datasets and

experimental conditions used in this research. This study focused on two

datasets, PROMISE_exp and SecReq, which represent a particular subset of

software requirements, with a special emphasis on security-related ones. While

these datasets are useful for evaluating the classification capabilities of LLMs in

the context of security requirements, they may not fully capture the diversity of

software requirements in broader domains or industries. Therefore, the results

may not necessarily generalize to other types of NFRs from different domains.

Construct validity. Construct validity focuses on whether the evaluation

methods and metrics effectively measure the intended objectives. This study

employed standard classification metrics such as precision, recall, and F1-score,

which are well-established and widely accepted in similar research domains.

However, the reliance on manual prompt engineering introduces a degree of

subjectivity that could impact the consistency of results. Slight variations

in prompt phrasing can lead to differences in performance. To address this

limitation and ensure transparency, we have made all the constructed prompts

publicly available. These prompts were carefully designed and refined based

on initial model responses to maximize clarity and relevance while aligning

with the study’s objectives. The availability of these prompts allows for

systematic evaluation of how different phrasing or structures impact the

performance of the models, contributing to a deeper understanding of the

role of prompt engineering in such studies. Furthermore, the study did not

explore fine-tuning the model on domain-specific data. This decision aligns

with the growing interest in leveraging the out-of-the-box capabilities of LLMs.

By avoiding fine-tuning, we make our methodology broadly applicable and

resource-efficient, as fine-tuning can be computationally expensive and may

limit generalizability. Additionally, our findings demonstrate that high-quality

results can be achieved without fine-tuning.

5

Conclusion and Future work

This study evaluates the efficacy of LLMs in classifying security-related

software requirements, comparing their performance to that of state-of-the-art

ML algorithms. Our study highlights several key implications and contribu-

tions for developers, tool builders, and researchers, which are as follows:

– LLMs are effective for security-related requirement classifica-

tion: The zero-shot approach demonstrated that LLMs, particularly

models like mistral-nemo, achieved high accuracy in identifying security-

related requirements, with an F1-score of 0.77. This indicates that

LLMs can perform the classification task effectively without the need

for domain-specific training or significant overhead.

– Prompt engineering can significantly improve model accuracy:

The application of prompting strategies, particularly a hybrid approach

combining Role Prompting and Instruction Prompting, referred to as

raw-inst, led to a marked improvement in model accuracy. The raw-inst

approach increased the F1-score by an average of +0.09, with models

like Mistral achieving an F1-score of 0.82. This demonstrates the impact

that refined prompting can have on enhancing classification outcomes,

with minimal overhead.

– LLMs can outperform traditional ML models: When compared to

state-of-the-art ML models, Mistral-nemo outperformed the traditional

J48 algorithm presented in [6] in almost all scenarios, and surpassed

Knauss’s Bayesian classifier [7] in cross-dataset evaluations.

The findings of this study open up numerous promising avenues for future

research:

– Use of the PROMISE+ dataset: Future work should incorporate the

PROMISE+ dataset, developed by Silva et al. [33], which is an expansion

of the PROMISE_exp dataset used in this study. This would enable a

more robust evaluation of LLMs in comparison to traditional ML models,

providing a broader and more representative sample of security-related

software requirements.

Chapter 5. Conclusion and Future work 39

– Comparison with ML models using both datasets: In this study,

we compared LLMs to ML models using only the SecReq dataset. To

strengthen this comparison, future work could involve reaching out to

the authors of studies mentioned research question 3, and applying the

same ML models to the PROMISE_exp. This would provide a more

comprehensive evaluation.

– Comparison with other studies evaluating LLMs for the same

task: This study focused on comparing LLMs only with traditional ma-

chine learning models from the literature. Future work could extend this

comparison to include other studies that evaluate LLMs for requirements

classification tasks, particularly fine-tuned versions of the BERT model,

such as NoRBERT [17] and PRCBERT [18], which have demonstrated

promising results in related scenarios. This would provide a broader per-

spective on the effectiveness of LLMs in this domain.

– Expansion of models and prompting strategy pool: The set of

LLMs and prompting strategies used in this study was limited. Future

research should explore a wider range of models and prompting strate-

gies, including variations in phrasing, context, and detail. This would

help identify the most effective approaches for security-related software

requirements classification and take advantage of recent advancements

in the field.

– Real-time requirement classification: Building on the findings of our

study, we plan to develop an integrated tool designed to classify require-

ments specifications in real-time. This tool would seamlessly integrate

with existing requirement specification platforms, such as JIRA, IBM

DOORS, or other popular tools used by software development teams.

The proposed tool could implement the best strategies identified in our

findings, leveraging multiple LLMs based on the available computational

resources. It would provide actionable insights directly within the envi-

ronment where requirements are managed, making it easier to address

critical security aspects during the early stages of development. Further-

more, incorporating automated security requirement classification can

assist assigning tasks to qualified team members.

– Qualitative analysis of the datasets: Future work should incorporate

a qualitative analysis of the requirements in both datasets. This analysis

would allow researchers to identify the strengths and weaknesses of the

LLMs’ classification accuracy. Additionally, it would help pinpoint areas

where prompting strategies could be improved, ultimately enhancing

Chapter 5. Conclusion and Future work 40

the overall accuracy. A more thorough qualitative evaluation of the

requirements themselves could also provide insights into potential biases

or gaps in the data, offering further avenues for refinement of the models

and strategies used.

6

Data Availability

All scripts and data used in this study are available in the replication

package [8]. The replication package provide comprehensive instructions for

setting up and reproducing the experiments. This includes: (1) the specific

configurations, hyperparameters, and memory requirements for each LLM; (2)

information on how our prompt was built; and (3) scripts for reproducing the

evaluations, including comments to guide replication.

7

Appendix

.1

Prompting templates

In this appendix, we present the placeholders used in the prompt strategy

along with their corresponding values, as well as the templates utilized for each

strategy.

.1.1

Placeholders

– Target requirement: Requirement to be classified

– Security requirement: Example requirement with the label sec

– Non-security requirement: Example requirement with the label non-

sec

– Task specification: "Label it as a security-related requirement (sec) or

non-security-related requirement (nonsec)."

– Answer template specification: "Return the result as a JSON with

the following format: {{label: sec or nonsec}}"

– CoT promotion: "Let’s think step by step. Provide reasoning before

giving the response."

– Model instruction: "You are an expert in requirements engineering.

You are tasked with the classification of requirements for a software

project. You should consider 2 types of requirements: security-related

requirement (sec) and non security-related requirements (nonsec)."

– Task instruction: "Security-related requirements are those that explic-

itly address the protection of a system’s data, resources, and functional-

ities from unauthorized access, threats, or vulnerabilities. They encom-

pass aspects such as user authentication, data encryption, access controls,

and compliance with security standards. In contrast, non-security-related

requirements pertain to the general functionality and performance of a

system without specific considerations for security. These may include

operational features, usability, and system performance metrics that do

not inherently involve safeguarding against security risks."

Chapter 7. Appendix 43

.1.2

Templates

The exact placeholders values are described in Section .1.1.

1. Zero-Shot:

"For the given requirement: {target requirement}, {task specification}.

{answer template specification}"

2. Few-Shot:

"user_1 = For the given requirement: {security requirement}, {task

specification}. {answer template specification}

response_1: {’label’: ’sec’}

user_2 = For the given requirement: {non security requirement}, {task

specification}. {answer template specification}

response_2: {’label’: ’nonsec’}

user_3 = For the given requirement: {target requirement}, {task speci-

fication}. {answer template specification}.

response_3: ... "

3. Auto-CoT:

"For the given requirement: {target requirement}, {task specification}.

{CoT promotion}. {answer template specification}."

4. Raw-Inst:

"{model instruction}. {task instruction}. For the given requirement: {tar-

get requirement}, {task specification}. {answer template specification}.

Bibliography

[1] SOMMERVILLE, I.. Engenharia de Software. Pearson, 2013.

[2] MELLADO, D.; BLANCO, C.; SÁNCHEZ, L. E. ; FERNÁNDEZ-MEDINA,

E.. A systematic review of security requirements engineering.

Computer Standards & Interfaces, 32(4):153–165, 2010.

[3] KIM, H.-K.; CHUNG, Y.-K.. Automatic translation form require-

ments model into use cases modeling on uml. In: COMPUTATIONAL

SCIENCE AND ITS APPLICATIONS–ICCSA 2005: INTERNATIONAL CON-

FERENCE, SINGAPORE, MAY 9-12, 2005, PROCEEDINGS, PART III 5, p.

769–777. Springer, 2005.

[4] HOUMB, S. H.; ISLAM, S.; KNAUSS, E.; JÜRJENS, J. ; SCHNEIDER, K..

Eliciting security requirements and tracing them to design: an

integration of common criteria, heuristics, and umlsec. Require-

ments Engineering, 15:63–93, 2010.

[5] SCHNEIDER, K.; KNAUSS, E.; HOUMB, S.; ISLAM, S. ; JÜRJENS, J..

Enhancing security requirements engineering by organizational

learning. Requirements Engineering, 17:35–56, 2012.

[6] LI, T.. Identifying security requirements based on linguistic anal-

ysis and machine learning. In: 2017 24TH ASIA-PACIFIC SOFTWARE

ENGINEERING CONFERENCE (APSEC), p. 388–397. IEEE, 2017.

[7] KNAUSS, E.; HOUMB, S.; SCHNEIDER, K.; ISLAM, S. ; JÜRJENS, J.. Sup-

porting requirements engineers in recognising security issues.

In: REQUIREMENTS ENGINEERING: FOUNDATION FOR SOFTWARE

QUALITY: 17TH INTERNATIONAL WORKING CONFERENCE, REFSQ

2011, ESSEN, GERMANY, MARCH 28-30, 2011. PROCEEDINGS 17, p.

4–18. Springer, 2011.

[8] MARTIN, M.. Replication Package for LLM for Security-Related

Requirement Classification. https://github.com/aisepucrio/

llm-security-req-classification.git, dec 2024. Accessed: 2024-12-

30.

https://github.com/aisepucrio/llm-security-req-classification.git
https://github.com/aisepucrio/llm-security-req-classification.git

Bibliography 45

[9] ANTON, A. I.. Goal identification and refinement in the specifi-

cation of software-based information systems. Georgia Institute of

Technology, 1997.

[10] DAVIS, A. M.. Software requirements: objects, functions, and

states. Prentice-Hall, Inc., 1993.

[11] KOTONYA, G.; SOMMERVILLE, I.. Requirements engineering: pro-

cesses and techniques. Wiley Publishing, 1998.

[12] RAIAAN, M. A. K.; MUKTA, M. S. H.; FATEMA, K.; FAHAD, N. M.; SAKIB,

S.; MIM, M. M. J.; AHMAD, J.; ALI, M. E. ; AZAM, S.. A review on

large language models: Architectures, applications, taxonomies,

open issues and challenges. IEEE Access, 2024.

[13] MA, W.; LIU, S.; LIN, Z.; WANG, W.; HU, Q.; LIU, Y.; ZHANG, C.; NIE,

L.; LI, L. ; LIU, Y.. Lms: Understanding code syntax and semantics

for code analysis. arXiv preprint arXiv:2305.12138, 2023.

[14] HOU, X.; ZHAO, Y.; LIU, Y.; YANG, Z.; WANG, K.; LI, L.; LUO, X.; LO,

D.; GRUNDY, J. ; WANG, H.. Large language models for software

engineering: A systematic literature review. ACM Transactions on

Software Engineering and Methodology, 2023.

[15] EZZINI, S.; ABUALHAIJA, S.; ARORA, C. ; SABETZADEH, M.. Auto-

mated handling of anaphoric ambiguity in requirements: a multi-

solution study. In: PROCEEDINGS OF THE 44TH INTERNATIONAL

CONFERENCE ON SOFTWARE ENGINEERING, p. 187–199, 2022.

[16] SRIDHARA, G.; MAZUMDAR, S. ; OTHERS. Chatgpt: A study on its

utility for ubiquitous software engineering tasks. arXiv preprint

arXiv:2305.16837, 2023.

[17] HEY, T.; KEIM, J.; KOZIOLEK, A. ; TICHY, W. F.. Norbert: Trans-

fer learning for requirements classification. In: 2020 IEEE 28TH

INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE),

p. 169–179. IEEE, 2020.

[18] LUO, X.; XUE, Y.; XING, Z. ; SUN, J.. Prcbert: Prompt learning for

requirement classification using bert-based pretrained language

models. In: PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL

CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, p. 1–13,

2022.

Bibliography 46

[19] WANG, Y.; SHI, L.; LI, M.; WANG, Q. ; YANG, Y.. A deep context-

wise method for coreference detection in natural language re-

quirements. In: 2020 IEEE 28TH INTERNATIONAL REQUIREMENTS

ENGINEERING CONFERENCE (RE), p. 180–191. IEEE, 2020.

[20] MA, L.; LIU, S.; LI, Y.; XIE, X. ; BU, L.. Specgen: Automated

generation of formal program specifications via large language

models. arXiv preprint arXiv:2401.08807, 2024.

[21] XIE, D.; YOO, B.; JIANG, N.; KIM, M.; TAN, L.; ZHANG, X. ; LEE,

J. S.. Impact of large language models on generating software

specifications. arXiv preprint arXiv:2306.03324, 2023.

[22] SAHOO, P.; SINGH, A. K.; SAHA, S.; JAIN, V.; MONDAL, S. ; CHADHA,

A.. A systematic survey of prompt engineering in large language

models: Techniques and applications. arXiv preprint arXiv:2402.07927,

2024.

[23] RADFORD, A.; WU, J.; CHILD, R.; LUAN, D.; AMODEI, D.; SUTSKEVER,

I. ; OTHERS. Language models are unsupervised multitask learn-

ers. OpenAI blog, 1(8):9, 2019.

[24] BROWN, T.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN, J. D.;

DHARIWAL, P.; NEELAKANTAN, A.; SHYAM, P.; SASTRY, G.; ASKELL,

A. ; OTHERS. Language models are few-shot learners. Advances in

neural information processing systems, 33:1877–1901, 2020.

[25] WEI, J.; WANG, X.; SCHUURMANS, D.; BOSMA, M.; XIA, F.; CHI, E.;

LE, Q. V.; ZHOU, D. ; OTHERS. Chain-of-thought prompting elicits

reasoning in large language models. Advances in neural information

processing systems, 35:24824–24837, 2022.

[26] ZHANG, Z.; ZHANG, A.; LI, M. ; SMOLA, A.. Automatic chain

of thought prompting in large language models. arXiv preprint

arXiv:2210.03493, 2022.

[27] KONG, A.; ZHAO, S.; CHEN, H.; LI, Q.; QIN, Y.; SUN, R.; ZHOU, X.;

WANG, E. ; DONG, X.. Better zero-shot reasoning with role-play

prompting. arXiv preprint arXiv:2308.07702, 2023.

[28] CLAVIÉ, B.; CICEU, A.; NAYLOR, F.; SOULIÉ, G. ; BRIGHTWELL, T..

Large language models in the workplace: A case study on prompt

Bibliography 47

engineering for job type classification. In: INTERNATIONAL CON-

FERENCE ON APPLICATIONS OF NATURAL LANGUAGE TO INFORMA-

TION SYSTEMS, p. 3–17. Springer, 2023.

[29] LIMAYLLA-LUNAREJO, M.-I.; CONDORI-FERNANDEZ, N. ; LUACES,

M. R.. Towards a fair dataset for non-functional requirements.

In: PROCEEDINGS OF THE 38TH ACM/SIGAPP SYMPOSIUM ON AP-

PLIED COMPUTING, p. 1414–1421, 2023.

[30] REUTERS. Openai says chatgpt’s weekly users

have grown to 200 million. https://www.

reuters.com/technology/artificial-intelligence/

openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/.

Accessed: 2024-12-27.

[31] ZHOU, Z.; LI, L.; CHEN, X. ; LI, A.. Mini-giants:" small" language

models and open source win-win. arXiv preprint arXiv:2307.08189,

2023.

[32] OPENAI. Gpt-4o mini: advancing cost-

efficient intelligence. https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024.

Accessed: 2024-12-15.

[33] SILVA, B.; NASCIMENTO, R.; RIVERO, L.; BRAZ, G.; SANTOS, R.;

MARTINS, L. ; VIANA, D.. Promise+: expandindo a base de dados

de requisitos de software promise exp. Anais do XXXVIII Simpósio

Brasileiro de Engenharia de Software, p. 291–301, 2024.

[34] CLELAND-HUANG, J.; SETTIMI, R.; ZOU, X. ; SOLC, P.. The detec-

tion and classification of non-functional requirements with ap-

plication to early aspects. In: 14TH IEEE INTERNATIONAL REQUIRE-

MENTS ENGINEERING CONFERENCE (RE’06), p. 39–48, 2006.

[35] CLELAND-HUANG, J.; SETTIMI, R.; ZOU, X. ; SOLC, P.. Automated

classification of non-functional requirements. Requirements Engi-

neering, 12(2):103–120, 2007.

[36] GLINZ, M.. On non-functional requirements. In: 15TH IEEE INTER-

NATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE 2007),

p. 21–26. IEEE, 2007.

[37] Ieee standard glossary of software engineering terminology. IEEE

Std 610.12-1990, p. 1–84, 1990.

https://www.reuters.com/technology/artificial-intelligence/openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/
https://www.reuters.com/technology/artificial-intelligence/openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/
https://www.reuters.com/technology/artificial-intelligence/openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Bibliography 48

[38] KOBILICA, A.; AYUB, M. ; HASSINE, J.. Automated identification of

security requirements: A machine learning approach. In: PRO-

CEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON EVALU-

ATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE ’20, p.

475–480, New York, NY, USA, 2020. Association for Computing Machinery.

[39] LIMA, M.; VALLE, V.; COSTA, E. A.; LIRA, F. ; GADELHA, B.. Soft-

ware engineering repositories: Expanding the promise database.

In: PROCEEDINGS OF THE XXXIII BRAZILIAN SYMPOSIUM ON SOFT-

WARE ENGINEERING, SBES ’19, p. 427–436, New York, NY, USA, 2019.

Association for Computing Machinery.

