
 

 

Murilo de Sá Martin 

 

 

 

 
Evaluating the Potential of Large Language 

Models in Security-Related Software 
Requirements Classification 

 

 

 

 

 

 

Undergraduate Project Work 

 

Undergraduate project work presented to the Undergraduate Pro- 
gram in Computer Engineering of PUC-Rio in partial fulfillment 
of the requirements for the degree of Bachelor in Computer En- 
gineering. 

 
Advisor: Prof. Juliana Alves Pereira 

 
 
 
 
 
 
 
 
 

 
Rio de Janeiro 
January 2025 



 

 

Murilo de Sá Martin 

 

 
Evaluating the Potential of Large Language 

Models in Security-Related Software 
Requirements Classification 

 

 

 

 

Undergraduate project work presented to the Undergraduate Pro- 
gram in Computer Engineering of PUC-Rio in partial fulfillment 
of the requirements for the degree of Bachelor in Computer 
Engineering. Approved by the Examination Committee. 

 
 

 

Prof. Juliana Alves Pereira 

Advisor 
Departamento de Informática – PUC-Rio 

 
 

 

Prof. Anderson Gonçalves Uchôa 

Universidade Federal do Ceará – UFC 

 
 
 

 

Prof.ª Daniel José Barbosa Coutinho 

Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio 

 
 
 

 
Rio de Janeiro, January 7th, 2025 



de Sá Martin, Murilo 

Evaluating the Potential of Large Language Models in 

rilo de Sá Martin; advisor: Juliana Alves Pereira. – Rio de 
Janeiro: PUC-Rio, Departamento de Informática, 2025. 

v., 48 f: il. color. ; 30 cm 

Projeto Final de Graduação - Pontifícia Universidade 
Católica do Rio de Janeiro, Departamento de Informática. 

  

1. Non-Functional Requirements – Teses. 2. Machine Le- 

tural Language Processing – Teses. 5. Requirements Classi- 
fication – Teses. 6. Engenharia de requisitos;. 7. Requisitos 

         
9. Classificação de requisitos de segurança;. 10. Engenharia 
de prompts;. 11. Aprendizado de máquina;. I. Alves Pereira, 

Departamento de Informática. III. Título. 

All rights reserved. 
 
 
 
 
 
 
 
 

 

Murilo de Sá Martin 

 

 

 

 

 

 

 

 

Bibliographic data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CDD: 004 



Acknowledgments 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
I want to express my deep gratitude to my girlfriend, friends and family for 

their unwavering support and understanding throughout this journey. Writing 

this thesis often meant sacrificing precious moments with them, and their 

patience and encouragement were fundamental in helping me persevere. 

Also, I am especially thankful to my academic advisor, who not only 

guided me with expertise but also understood the demanding situation I 

was in—balancing work, other academic responsibilities and this research. 

Her understanding and support were invaluable in helping me achieve this 

milestone. 



Abstract 
 

 
 
 
 

 
de Sá Martin, Murilo; Alves Pereira, Juliana. Evaluating the 
Potential of LLMs in the Classification of Security-
Related Software Requirements. Rio de Janeiro, 2025. 48p. 
Final Undergraduate Project - Department of Informatics, 
Pontifical Catholic University of Rio de Janeiro. 

 
Effective classification of security-related software requirements is 

essential for mitigating potential threats and ensuring robust system 

design. This study investigates the accuracy of large language models 

(LLMs) in classifying security-related requirements compared to 

traditional machine learning (ML) methods. Using the SecReq and 

PROMISE_exp datasets, we evaluated nine LLMs across various prompt 

engineering strategies. The re- sults demonstrate that LLMs achieve high 

accuracy and outperform traditional ML models in several evaluation 

scenarios and that prompt engineering can significantly enhance the 

model’s ability to identify security-related requirements. This work 

underscores the domain-generalization capabilities of LLMs and their 

potential to streamline requirements classification without the complexity 

of feature engineering or dataset-specific fine-tuning often required by ML 

approaches. Researchers, practitioners, and tool developers can leverage 

these findings to advance automated approaches in security 

requirements engineering. 
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Resumo 
 

 
 
 
 
 
 

 
de Sá Martin, Murilo; Alves Pereira, Juliana. Avaliando o Poten- 
cial de LLMs na Classificação de Requisitos de Software 
Relacionados a Segurança . Rio de Janeiro, 2025. 48p. Projeto 
Final de Graduação – Departamento de Informática, Pontifícia Uni- 
versidade Católica do Rio de Janeiro. 

 
A classificação eficaz de requisitos de software relacionados à 

segurança é essencial para mitigar potenciais ameaças e garantir um 

design de sistema robusto. Este estudo investiga a precisão dos Modelos 

de Linguagem de Grande Escala (LLMs) na classificação de requisitos 

relacionados à segurança em comparação com métodos tradicionais de 

aprendizado de máquina (ML). Utilizando os conjuntos de dados SecReq e 

PROMISE_exp, avaliamos nove LLMs em diferentes estratégias de 

engenharia de prompts. Os resultados demonstram que os LLMs alcançam 

alta acurácia e superam os modelos tradicionais de ML em diversos 

cenários de avaliação, além de mostrar que a engenharia de prompts pode 

melhorar significativamente a capacidade dos modelos de identificar 

requisitos relacionados à segurança. Este trabalho destaca as capacidades 

de generalização dos LLMs e seu potencial para simplificar a classificação 

de requisitos sem a complexidade de engenharia de atributos ou fine-

tuning, comumente necessários em aborda- gens de ML. Pesquisadores, 

profissionais e desenvolvedores de ferramentas podem aproveitar essas 

descobertas para avançar em abordagens automatizadas na engenharia de 

requisitos de segurança. 
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1 
 

Introduction 

 

 

 

 
Software requirements are detailed descriptions of the functions, capa- 

bilities, and constraints that a software system must fulfill to meet the needs 

of its users and stakeholders. They are categorized into functional require- 

ments (FRs) and non-functional requirements (NFRs). FRs detail what tasks 

the system must perform, while NFRs describe how a system should operate 

[1]. These requirements serve as a blueprint for developers, guiding software 

design, implementation, and testing. 

One major challenge in managing NFRs is their inherent diversity and 

complexity. There is no consensus regarding their definition, scope, level of 

abstraction, granularity, priority, and inter-dependencies, making it hard for 

stakeholders to identify, comprehend, and communicate about these require- 

ments [36]. Among existing NFRs, security stands out as particularly critical. 

In recent years, the field of Security Requirements Engineering (SRE) has at- 

tracted considerable attention within the requirements engineering community 

[2]. It is widely accepted that incorporating security early in the development 

process is more cost-effective and leads to a more robust design [3]. Thus, 

its early identification and integration would mitigate potential threats and 

reduce future security-related issues. However, distinguishing security-related 

requirements from other FRs and NFRs can be tedious and error-prone [38]. 

This study aims to investigate the accuracy of open and closed-source 

LLMs in classifying security-related software requirements and compare them 

with state-of-the-art Machine Learning (ML) approaches documented in the 

literature. To evaluate the effectiveness of LLMs in classifying security-related 

NFRs, we used two datasets: SecReq [4, 5] and a subset of the PROMISE_exp 

[39] dataset. SecReq contains 510 requirements, including 187 security-related 

and 323 non-security-related requirements. The PROMISE_exp subset, specif- 

ically created to categorize security-related and non-security-related require- 

ments, comprises 125 security-related and 844 non-security-related require- 

ments. 

This work differs from previous studies by focusing on the use of LLMs 

for security requirements classification instead of traditional ML algorithms. 

Traditional ML algorithms often require complex feature engineering, special- 
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ized skills, and significant setup effort, as well as the creation of large amounts 

of labeled training data, which is time-consuming and labor-intensive and can 

make them harder to adopt. In contrast, LLMs offer ease of use through nat- 

ural language prompting and minimal setup effort. The simplicity and ease of 

interaction enabled by NLP is a key factor that can make them well-suited for 

smooth integration with agile software management tools like Jira and others, 

enhancing their practicality in modern development workflows. LLMs, if proven 

effective, can be integrated directly within these tools and play a pivotal role 

in addressing critical security aspects early in the development process. They 

enable precise task assignments by automatically identifying security-related 

requirements and allocating them to team members with the appropriate ex- 

pertise. This not only enhances efficiency but also fosters better collaboration 

among team members, ensuring that security concerns are addressed with the 

necessary focus and expertise. 

The results demonstrate that, overall, LLMs are effective at accurately 

identifying security-related requirements, even in a zero-shot setting. Regard- 

ing the impact of prompt engineering on the evaluation metrics for each model, 

most prompting strategies yielded diminishing or negligible improvements. The 

notable exception was raw-inst, a combination of role and instruction prompt- 

ing (see Section 2.2.1), which significantly enhanced the models’ ability in 

detecting security-related requirements. Contrary to expectations, where more 

complex prompts were anticipated to have a greater impact on larger models, 

no clear correlation was observed between model size or version and accuracy 

improvement with different prompting techniques. In fact, the most substan- 

tial improvements were seen using the raw-inst technique (see Section 2.2.1) 

in the smallest models from the oldest generations of the Mistral and Gemma 

families, which initially exhibited the weakest results in the baseline zero-shot 

approach. Mistral-nemo, the model with the highest F1_score when evaluated 

on the SecReq dataset, outperformed the traditional J48 algorithm presented 

in [6] in almost all scenarios, and outperformed knauss’es Bayesian classifier [7] 

in cross-domain evaluations. The results highlight the potential of LLMs, par- 

ticularly when combined with role-and-instruction-based prompting strategies 

like raw-inst, to achieve solid accuracy in classifying security-related require- 

ments. Our approach not only demonstrates better domain generalization com- 

pared to the traditional ML models evaluated on the SecReq dataset but also 

surpasses them in some intra-domain evaluation scenarios, without the fine- 

tuning and labeling overhead commonly associated with ML models. 

The contributions of this work are as follows: 

 
– A comprehensive study of how 9 different LLMs perform when classifying 
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security requirements from 1,479 requirement specifications from the 

SecReq [4, 5] and PROMISE_exp [39] datasets. 

– An in-depth analysis of how prompt engineering techniques can be 

applied in classifying security requirements and how they affect the 

accuracy and performance of LLMs. 

– A comparative evaluation against traditional ML models, highlighting 

the domain-independent performance of LLMs and their potential as 

viable alternatives to task-specific models. 

– We have made all artifacts from our study publicly available at [8]. 

 
Audience: Researchers, practitioners, and tool builders benefit from our 

experiments and insights in understanding how effective LLMs are in iden- 

tifying and classifying security requirements in comparison to ML-based ap- 

proaches. Furthermore, our work showcases the potential of prompt engineering 

techniques in this field. 



 

2 

Background and Related Work 

 

 

 

 
In this section, we define key concepts and explore related studies in the 

field of software requirements engineering. 

 

2.1 

Functional and Non-Functional Requirements 

The specification of software requirements is a starting point for soft- 

ware development. Institute of Electrical and Electronics Engineers (IEEE) 

Standard 610.12-1990 [37] defines software requirements in three ways: 

1. A condition or capability needed by a user to solve a problem or achieve 

an objective. 

2. A condition or capability that must be met or possessed by a system or 

system component to satisfy a contract, standard, specification, or other 

formally imposed documents. 

3. A documented representation of a condition or capability, as in (1) or (2). 

 
Requirements can be categorized into Functional Requirements (FRs) 

and Non-Functional Requirements (NFRs). FRs specify a function that a 

system or system component must be able to perform [37]. While FRs are 

generally easier to define, NFRs are less straightforward, as despite the term 

being used for decades, there is no consensus on its definition [36]. For example, 

Anton et al. [9] describe NFRs as capturing the non-behavioral aspects of a 

system, while others emphasize system attributes like reliability, performance, 

and security [10]; or focus on constraints that guide system operation and 

development [11]. Although interpretations vary, NFRs generally describe how 

a system should operate, and there is an unanimous consensus that NFRs are 

important and can be critical for the success of a project [36]. 
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2.2 

Large Language Models for Software Engineering 

The rapid evolution of Large Language Models (LLMs) has been driven by 

advances in deep learning, abundant computing resources, and vast training 

datasets, resulting in powerful capabilities for Natural Language Processing 

(NLP) tasks and broad applications across multiple fields [12]. Software 

Engineering (SE) – a discipline focused on the development, implementation, 

and maintenance of software systems – is one of those areas reaping the benefits 

of the LLM revolution [13]. The use of LLMs in SE primarily emerges from 

an innovative perspective where numerous SE challenges can be effectively 

reframed into data, code, or text analysis tasks. Within SE, requirements 

engineering (RE) – a critical subset focused on the identification, analysis, 

and documentation of software requirements – has seen notable applications of 

LLMs. A recent systematic literature review by Hou et al. [14] identifies several 

tasks within the domain of requirements engineering where LLMs have been 

applied. Among these tasks are anaphoric ambiguity treatment, requirements 

classification, co-reference detection, and specification generation. 

 
– Anaphoric ambiguity treatment: In requirements engineering, anaphoric 

ambiguity occurs when a pronoun can plausibly refer to different en- 

tities, leading to varying interpretations by different readers [15]. This 

ambiguity can result in different interpretations of requirements, poten- 

tially causing suboptimal software artifacts during development. Ezzini 

et al. [15] and Sridhara et al. [16] have demonstrated the effectiveness of 

LLMs like SpanBERT and ChatGPT in addressing anaphoric ambiguity 

in software requirements. 

– Requirements classification: Requirements, which stem from natural lan- 

guage documents, require efficient classification, particularly for early- 

stage project assessments, such as identifying security-related ones [3]. 

Hey et al. [17] demonstrate that NoRBERT, a model fine-tuned from 

BERT, excels in classifying both functional and non-functional require- 

ments, outperforming traditional methods in several tasks. Additionally, 

Luo et al. [18] propose PRCBERT, a BERT-based classification method 

that utilizes flexible prompt templates. It achieves accurate requirements’ 

classification for zero-shot scenarios. 

– Co-reference detection: Co-reference in Requirements Engineering occurs 

when different expressions in a requirements document refer to the same 

system component. If co-references are not resolved, it can lead to ambi- 

guity or misinterpretation of the requirements, causing confusion about 
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what is being described. Wang et al. [19] propose a fine-tuned version of 

BERT that accurately detects co-reference in software requirements. 

– Specification generation: Specification generation involves creating for- 

mal program specifications that define the behavior and functionality of 

software systems. Manually crafting these specifications is particularly 

challenging for complex programs, as they must capture all semantic de- 

tails of the code accurately. Ma et al. [20] introduce SpecGen, a novel 

technique leveraging LLMs to successfully generate verifiable specifica- 

tions for most of the programs evaluated in their study. Xie et al. [21] 

conducted experiments on state-of-the-art LLMs, evaluating their per- 

formance and cost-effectiveness for specification generation, and found 

that certain open-source models achieve high effectiveness in specifica- 

tion generation and not only outperform traditional approaches, but also 

surpass larger, more expensive closed-source LLMs. 

 

2.2.1 

Prompt Engineering 

Prompt engineering has become a vital technique for expanding the abili- 

ties of LLMs. This technique utilizes task-specific instructions, called prompts, 

to improve model accuracy without altering the core model parameters. In- 

stead of adjusting these parameters, prompts enable pre-trained models to be 

smoothly applied to downstream tasks by triggering desired behaviors based 

solely on the prompt provided [22]. 

There are various prompting techniques, ranging from simple to complex, 

and no universally "best" technique exists. The effectiveness of a technique 

depends on the specific task. Simpler prompting techniques may work better 

for straightforward tasks, whereas more complex tasks often require additional 

effort from the user to craft detailed and nuanced prompts. Sahoo et al. [22] 

conducted a systematic survey of prompt engineering, categorizing various 

prompting strategies according to their suitability for different task domains. 

OpenAI provides a page on prompt engineering in its documentation1, where 

six strategies for achieving better results with their models are explained. 

Unlike most academic papers, this documentation targets a broader audience, 

not necessarily academics or researchers, and thus employs simpler, more 

accessible language. While it does not provide metrics on how each technique 

affects model accuracy and is less rigorous than academic papers, the page 

covers several important prompting techniques referenced in the literature. 

Common prompting techniques from the literature include: 

1https://platform.openai.com/docs/guides/prompt-engineering 
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– zero_shot: This technique [23] eliminates the need for extensive training 

data, relying instead on carefully crafted prompts that guide the model 

toward novel tasks based solely on the model’s pre-existing knowledge. 

– few_shot: This technique involves giving a model a few examples of a task 

at the time of use. The model then uses these examples to understand and 

complete a new, similar task, which reduces the need for large amounts 

of task-specific data [24]. 

– Manual Chain-of-Thought (CoT) Prompting: This technique provides 

language models with the ability to generate a coherent series of in- 

termediate reasoning steps that lead to the final answer for a problem. 

The idea is that LLM can generate chains of thought if demonstrations 

of chain-of-thought reasoning are provided in the exemplars for few-shot 

prompting [25]. 

– Automatic Chain-of-Thought (auto-CoT) Prompting: Instead of writing 

manual reasoning demonstrations one by one for each example as in 

Manual-CoT, auto-CoT leverages a simple prompt like “Let’s think step 

by step” to facilitate step-by-step thinking before answering a question 

[26]. 

– Role Prompting: This technique involves providing the model with a 

specific role in the prompt. The assigned role offers context about the 

LLM’s identity and background, enabling it to generate more natural, in- 

character responses tailored to that role [27]. Clavie et al. [28] explored 

combining role instructions with detailed task instructions, referring to 

this approach as raw-inst. 

 

2.3 

Security Requirements Classification 

To develop secure and reliable software systems, security requirements 

must be analyzed with caution [38]. There are several works in the literature 

that use ML and Deep Learning (DL) solutions to identify and classify security 

requirements [7, 6, 38]. 

Knauss et al. [7] introduced a tool-supported method to identify and 

categorize security requirements using a Bayesian classifier. They used the 

SecReq dataset and, according to their experiments, their approach succeeds 

in assisting requirements engineers in the task of identifying security-relevant 

requirements. It identifies the majority of the security-relevant requirements, 

achieving a recall greater than 0.9 and maintaining a precision exceeding 0.8, 
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indicating only a few false positives. These results were observed when the 

models were trained and evaluated within the same specification domain. 

Security requirements are often mixed with other types of requirements. 

Thus, many existing methods do not deliver the expected efficiency due to 

their domain-dependency [38]. To address this limitation, Li [6] proposed a 

hybrid method for identifying security requirements that combines linguistic 

analysis with ML. Their approach first revises a conceptual model of security 

requirements by defining linguistic rules and security keywords from literature. 

This definition guides the extraction of features for training classifiers using 

standard ML algorithms. They evaluated the method using a combination 

of different subsets of the Industry requirements specifications in the SeqReq 

dataset. Although their approach achieves a good average precision and recall 

across all tested subsets (0.79 and 0.75, respectively), the benchmark approach 

– Bayesian classifier trained by Knauss et al. [7] on the same dataset – 

demonstrates superior accuracy, with an average precision of 0.83 and recall of 

0.92. Nonetheless, the classifiers developed by their approach show promising 

potential for generalization to other domains, achieving an average precision 

of 0.69 and recall of 0.64 in cross-dataset evaluation, while the benchmark 

approach achieved an average precision of 0.51 and recall of 0.53. 

Armin Kobilica et al. [38] conducted an empirical study evaluating the 

effectiveness of 22 supervised ML classifiers and 2 deep learning approaches, 

using the SecReq dataset. Their approach minimized the typical overhead of 

linguistic and semantic preprocessing by applying simpler text preprocessing 

techniques. They apply word encoding for most classifiers and word embedding 

for CNN-based models. The results indicated that the Long Short-Term 

Memory (LSTM) network achieved the highest accuracy among deep learning 

models at 84%, while Boosted Ensemble led the supervised classifiers with an 

accuracy of 80%,demonstrating the strength of simplified preprocessing paired 

with robust algorithms. 

Although existing solutions leveraging ML and DL for security-related 

requirements classification have shown promising results, they also exhibit cer- 

tain limitations. One of the main challenges lies in their domain dependency; 

these models often rely on features or data specific to particular contexts, lim- 

iting their applicability across diverse projects. Additionally, such approaches 

often involve significant overhead, including the need for fine-tuning models, 

labeling data, and configuring parameters—all of which require considerable 

expertise and effort. 

In contrast, LLMs present a more versatile and user-friendly alternative. 

Unlike traditional ML or DL approaches, LLMs are not domain-dependent, 
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enabling broader applicability without extensive customization. Moreover, 

their ability to process natural language prompts eliminates the need for 

complex configurations or fine-tuning, making them significantly easier to 

deploy. These advantages position LLMs as a practical solution for addressing 

the challenges of security-related requirements’ classification, particularly in 

scenarios where domain generalization and usability are critical. 



 

3 

Study Design 

 

 

 

 
This study aims to investigate the effectiveness and applicability of 

LLMs for classifying security requirements, focusing specifically on the context 

of requirement specification documents at the software design stage. Given 

the specialized language in the developer description of these documents, 

our goal is to determine whether LLMs can reach a higher accuracy than 

traditional ML-based approaches and to understand how prompt engineering 

could improve their performance. 

 

3.1 

Research Questions 

Based on our aim, this study is guided by three research questions (RQs), 

as follows: 

RQ1 What is the accuracy of LLMs in distinguishing security-related require- 

ments from non-security requirements in a zero-shot approach? 

RQ2 How do different prompting strategies change the accuracy of LLMs in 

classifying security-related requirements? 

RQ3 How does the accuracy of LLMs compare to the accuracy of models 

reported in studies from the literature? 

RQ1 evaluates the baseline accuracy of LLMs when no additional task- 

specific data is provided. The goal is to assess their capability to classify 

security-related requirements based solely on general pre-trained knowledge 

without any further fine-tuning or task-specific training. We will evaluate the 

models using a zero-shot prompting strategy (see Section 3.2.4). The model’s 

predictions will be compared to the ground truth labels, and metrics such 

as precision, recall, and F1 score will be calculated to assess accuracy. RQ2 

investigates whether and how varying the way instructions (prompts) are 

presented to the LLM affects its classification accuracy. We used 3 additional 

prompt engineering strategies (see Section 3.2.4). Each strategy was evaluated 

on the same dataset, and the accuracy metrics were compared to identify the 

most effective approach. RQ3 aims to benchmark the accuracy of LLMs against 

existing ML-based models specifically developed for classifying security-related 
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requirements, as reported in prior research. We identified relevant studies that 

have addressed similar classification tasks. Then, we compared key metrics 

(precision, recal and F1-score) of these studies. The LLM’s accuracy, evaluated 

in RQ1 and RQ2, was analyzed to determine whether LLMs can serve as viable 

alternatives or if task-specific models still outperform them in this domain. 

 

3.2 

Study Steps 

Our study consists of seven steps, which are illustrated in Figure 3.1. 

They are also described in the following sections. 
 
 

 

 
 

Figure 3.1: Overview of the study methodology. 
 

 

3.2.1 

Dataset Selection 

One major challenge in the field of software requirements engineering is 

the lack of publicly available, high-quality datasets [29]. This scarcity of reliable 

data limits the development and evaluation of models designed for tasks 

such as requirements classification. In this paper, we leverage two datasets, 

PROMISE_exp [39] and SecReq [4, 5], to support the classification of security- 

related requirements. 

The PROMISE_exp dataset, developed by Márcia Lima [39], is an 

expanded version of the publicly available PROMISE dataset, originally hosted 

in the PROMISE dataset repository and introduced in studies such as [34] 

and [35]. While the original PROMISE dataset contains 625 labeled software 

requirements from 15 different projects, PROMISE_exp increases the number 
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of requirements to 969 by incorporating 34 new projects into the dataset. 

These requirements are categorized into several types, including Availability 

(A), Fault Tolerance (FT), Legal (L), Look & Feel (LF), Maintainability 

(MN), Operational (O), Performance (PE), Portability (PO), Scalability (SC), 

Security (SE), Usability (US), and Functional (F). The expanded dataset 

includes 125 security-related requirements, with the remaining 844 categorized 

as non-security-related to form the security-focused subset used in this study. 

The expansion process involved structured web searches based on the keyword 

"Software Requirement Specification", manual analysis of the search results, 

and extraction of textual requirements in English. Structural compatibility 

with the original dataset was carefully maintained, ensuring continuity for 

researchers who previously worked with the original PROMISE dataset. 

SecReq is a dataset developed by Schneider et al. [4, 5], comprising 

510 requirements, of which 187 are security-related. The dataset includes 

three industry standards: Common Electronic Purse (ePurse) with 124 labeled 

entries, Customer Premises Network (CPN) with 210 labeled entries, and 

Global Platform Specification (GP) with 176 labeled entries. The requirements 

are manually labeled by experts as either "sec" (security-related) or "non-sec" 

(non-security-related). 

 

3.2.2 

Data Preprocessing 

Given that more than a thousand requirements need to be evaluated, with 

each requirement assessed multiple times, establishing an automated testing 

pipeline is essential. The PROMISE_exp dataset is in .arff format, while the 

SecReq dataset is in .csv format. A Python script was developed to extract 

each requirement along with its corresponding label, consolidating them into 

a unified JSON file. The JSON file contains an array of objects, where each 

object represents a requirement with the following fields: 

– project_id: Identifier for the project. The PROMISE_exp dataset al- 

ready had project identifiers, ranging from 1 to 49, and these were main- 

tained. The three industry standards (CPN, ePurse, and GPS) in the 

SecReq dataset received the IDs 50, 51, and 52, respectively. 

– requirement: The text of the requirement. 

– label: The classification of the requirement, either "sec" (security-related) 

or "nonsec" (non-security-related). 

– source: The origin of the requirement, such as "PROMISE_exp" or 

"secreq". 
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During data processing, one entry was found to be invalid in the SecReq 

dataset. While most requirements are labeled as "sec" or "nonsec", one had 

an erroneous label, "XYZ". This entry was removed from the consolidated 

JSON file. After processing the data, the consolidated dataset had 1,167 nonsec 

instances (78.9%) and 312 sec instances (21.1%). 

 

3.2.3 

Model Selection 

The field of LLMs is advancing rapidly, with new, cutting-edge models 

emerging on a monthly basis. This continuous innovation makes it a highly 

dynamic period for artificial intelligence and LLM research. Given the large 

number of available models, careful selection was necessary for this study. 

Our pool of models consists of 4 families: Gemma, Mistral, Llama and 

GPT. In terms of popularity, the first three chosen families of models – 

Gemma, Mistral, and Llama – are part of the top 20 most popular (in terms of 

downloads) families of LLM available in hugging face1. Due to cost concerns, 

we initially did not plan to test any closed-source models. However, during the 

development of this study, the release of the GPT-4o mini model—promising 

exceptional affordability and speed—prompted its inclusion in our pool of 

tested models. The GPT-4o mini model represented a true paradigm shift 

in cloud LLM usage, with reports indicating that the number of active users 

in OpenAI APIs doubled after its release [30]. 

The inclusion of both open-source and closed-source models allowed us 

to explore their contrasting characteristics. While closed-source models are 

typically executed through cloud-based APIs, which offload the computational 

overhead to the provider’s infrastructure, open-source models can be deployed 

locally, granting users full control over their execution environment. Closed- 

source models benefit from managed services, including uptime guarantees, 

automatic updates, and scalability, enabling developers to focus solely on uti- 

lizing the API. However, this reliance comes with drawbacks, such as potential 

privacy concerns, data dependence on the provider, and the ongoing opera- 

tional costs associated with API usage. In contrast, open-source models, when 

deployed locally, require users to handle the hardware setup, maintenance, and 

updates but offer enhanced data privacy, customization, and cost predictabil- 

ity. In our case, the closed-source cloud-deployed model utilized was GPT-4o 

mini, which provided all the advantages mentioned previously with minimal 

drawbacks. For our use case, there were no privacy concerns, and the cost of 

1https://huggingface.co/models?pipeline_tag=text-generation&sort= 
downloads 

https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads
https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads
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the cloud-based service was extremely low. On the other hand, the locally de- 

ployed LLMs were free to use but required significant computational resources 

and substantially more time to run all the prompts. 

Table 3.1 describes the names and characteristics of the nine models 

selected in this study. In terms of scalability, all models chosen are available 

in different variations, which mainly affect parameter count and performance, 

especially inference speed and memory requirements. A higher parameter count 

can also be associated with higher reasoning capabilities. For each model, we 

selected the configuration with the highest parameter count that our setup 

could support. The models tested in this study ranged from 7 billion to 27 

billion parameters. Approximately 10 billion parameters is generally considered 

the cutoff for a “small” language model [31]. While OpenAI does not disclose 

the exact parameter count of GPT-4o mini, it is described as a "small model" 

on their website [32]. However, without additional details, it remains unclear 

whether GPT-4o mini falls below this 10 billion parameter threshold. 

 
Table 3.1: Characteristics of the chosen LLMs 

Name Parameters 
(in billions) 

Size 
(GB) 

License Type 

Llama 3 8 4.7 Open Source 

Llama 3.1 8 4.9 Open Source 

Llama 3.2 - Vision 11 7.9 Open Source 

Mistral 7.25 4.1 Open Source 

Mistral-Nemo 12 7.1 Open Source 

Mistral-Small 22 12.0 Non-commercial use only 

Gemma 7 5.0 Open Source 

Gemma2 27 15.0 Open Source 

GPT-4o mini - - Closed Source 

 

 

3.2.4 

Prompt Design 

In terms of prompt design, we began with the zero-shot prompt, which 

served as the baseline for RQ1. For RQ2 and RQ3, we additionaly selected 

3 prompting strategies: few-shot, auto-CoT, and raw-inst (see Section 2.2.1). 

These strategies were chosen based on their simplicity, making them straight- 

forward to implement in practical scenarios, and their frequent use in prior 

studies [23, 24, 26, 27, 28] . 

The evaluation involved testing multiple prompting strategies across 

thousands of software requirement specifications, making it essential to auto- 

mate prompt generation. To address this, we developed a script that functioned 
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as a prompt factory, dynamically injecting requirements from our consolidated 

file (Step 2 in Figure 3.1) into predefined templates. 

Every prompt template instructs the model to classify a given require- 

ment as either security-related or non-security-related. Another common fea- 

ture across all prompts is the inclusion of an answer template, essential for 

automating evaluation and ensuring output consistency by specifying the re- 

sponse format in JSON. The rest of the prompt’s structure varies depending on 

the strategy used. The zero-shot prompt (Appendix .1.2, Item 1) has the sim- 

plest structure, including only the requirement, task specification, and answer 

template, with no additional information provided. For the few-shot prompt2 

(Appendix .1.2, Item 2), where we provide a set of examples for the model, 

markers like “user_x” and “response_x” distinguish each example, guiding the 

model to follow a consistent pattern. In the auto-CoT prompts (Appendix .1.2, 

Item 3), additional instructions prompt the model to think through its response 

in structured steps before delivering the final answer, encouraging a reasoning- 

driven approach. For the raw-inst prompt (Appendix .1.2, Item 4), the model 

is provided with a detailed description of its role and the task to be performed. 

 

3.2.5 

Model Execution 

We decided to use two providers to run the selected LLMs: OpenAI3 

(cloud-based) and Ollama4 (local). We use Ollama tool to deploy Llama 

3, llama3.1, and llama3.2-vision (from Meta), Mistral, Mistral-Nemo, and 

Mistral-Small (from Mistral AI), Gemma, and Gemma2 (from Google). The 

OpenAI API was used to deploy the GPT-4o mini. 

The locally-deployed LLMs were executed in a computer with the fol- 

lowing specifications: AMD Ryzen 5 5600X 6-Core Processor, 16GB of RAM 

and an NVIDIA GeForce RTX 3060 GPU, with 12GB of VRAM. We tune the 

model to be as deterministic as possible experimenting with different parame- 

ters and using temperature=0, thus removing the need for multiple runs using 

each prompt. 

2In our implementation of the few-shot strategy, we provided one example from each 
class (security-related and non-security-related). Note that it could be considered a "one- 
shot" approach by some authors. 

3https://openai.com/index/openai-api  
4https://ollama.com 

https://openai.com/index/openai-api
https://ollama.com/
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3.2.6 

Evaluation Metrics 

We will utilize the confusion matrix and its derived metrics to compare 

the various prompts and models evaluated in this study. The confusion matrix 

is a table summarizing the model’s predictions compared to the actual labeled 

instances as "sec" or "nonsec". The confusion matrix can be represented as 

follows: 

 

 

 Predicted "sec" Predicted "nonsec" 

Actual "sec" True Positive (TP) False Negative (FN) 

Actual "nonsec" False Positive (FP) True Negative (TN) 

Where: 
 

– True Positive (TP): Instances where the predicted requirement is 

classified as security-related, and it is also labeled for experts as security- 

related. 

– False Positive (FP): Instances where the model incorrectly predicts a 

requirement as security-related, but it is labeled as non-security-related. 

– False Negative (FN): Instances where the model fails to predict a 

requirement as security-related, even though it is actually labeled as 

security-related. 

– True Negative (TN): Instances where the model correctly predicts a 

requirement as non-security-related, and it is also labeled by experts as 

non-security-related. 

Several important metrics are derived from the confusion matrix: 

 

Precision Precision is the proportion of correctly predicted positive instances 

out of all instances predicted as positive: 

 

Precision = 
TP 

TP  FP 

 

Recall Recall, also known as sensitivity, is the proportion of actual positive 

instances that were correctly identified by the model: 

 

Recall = 
TP 

TP  FN 
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F1-Score The F1-score is the harmonic mean of precision and recall, balanc- 

ing the trade-off between these metrics: 

Precision × Recall 

Precision + Recall 

These metrics, derived from the confusion matrix, enable a detailed 

evaluation of the models’ accuracy and facilitates the comparison of different 

LLMs, prompting strategies and ML models in Section 4. 

We utilized Python scripts (available as part of the replication pack- 

age [8]) that leveraged the pandas library5 to analyze the output of the LLMs 

in terms of these metrics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5https://pandas.pydata.org/ 

F1-Score = 2 × 

https://pandas.pydata.org/


 

4 

Results and Discussion 

 

 

 

 
In this section, we discuss the results of the research questions defined in 

Section 3. 

 

4.1 

Accuracy of Zero Shot Approach (RQ1) 

Table 4.1 presents the precision, recall and F1-score for the nine models 

evaluated on their ability to classify security-related requirements using the 

baseline prompting approach, zero-shot. Overall, all models exhibited high 

recall but struggled with precision, reflecting their strong ability to identify 

true positives while often misclassifying false positives. F1-scores varied widely, 

ranging from 0.38 to 0.77, highlighting the models’ varying abilities to balance 

these metrics. 

Among the models, mistral-nemo stood out with the highest F1-score of 

0.77, driven by its strong precision (0.69) and recall (0.88), showcasing supe- 

rior capability in identifying security-related requirements. Mistral-small and 

mistral achieve comparable results, both with F1-scores of 0.70 and high re- 

call (0.97–0.98). Llama3, Llama3.1 and llama3.2-vision followed closely, with 

F1-scores ranging from 0.72 to 0.73, demonstrating balanced ability in iden- 

tifying security-related requirements. These models maintain strong precision 

(0.58–0.60) and recall (0.93–0.96), indicating they are reliable classifiers with 

balanced results. At the other end of the spectrum, gemma recorded the low- 

est F1-score of 0.38, driven by its extremely low precision (0.23), revealing a 

tendency to over-classify instances as sec and introduce more false positives. 

The cloud-based model, GPT-4o-mini, achieved a F1-score of 0.70. Its 

F1-score is competitive with other well-performing models like Llama3 and 

Mistral variants, making it a strong candidate for scenarios where maximizing 

recall is critical. However, it does not match the balance achieved by Mistral- 

nemo, which delivers both higher precision and F1-score. As GPT-4o-mini 

tends to sacrifice precision (0.55), it may not be the ideal choice when false 

positives carry a significant cost. Thus, leading to require additional manual 

verification to confirm the classifications. 
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model 

precision recall f1-score 

gemma 0.23 1.00 0.38 

gemma2 0.51 0.97 0.67 

gpt-4o-mini 0.55 0.99 0.70 

llama3 0.58 0.96 0.72 

llama3.1 0.60 0.93 0.73 

llama3.2-vision 0.60 0.95 0.73 

mistral 0.52 0.97 0.68 

mistral-nemo 0.69 0.88 0.77 

mistral-small 0.55 0.98 0.70 

Table 4.1: Acuracy by model in zero-shot approach 
 

 

4.2 

Accuracy of Different Prompting Engineering Strategies (RQ2) 

Table 4.2 summarizes the accuracy (precision, recall and F1-score) for 

the nine models and three additional prompting strategies investigated in this 

research question. 

 

Few-shot. This technique generally underperformed compared to the base- 

line (zero-shot) approach, with an average F1-score difference of -0.09 (see 

Table 4.3). Only one model, gemma, which had the poorest accuracy in the 

zero-shot approach, showed improvement, but its F1-score (0.43) remained be- 

low competitive levels. For all other models, precision and recall worsened, with 

some experiencing an F1-score drop of up to 0.20, underscoring the limitations 

of this strategy for this task. 

 

Auto-CoT. The auto-CoT technique showed limited impact on the models’ 

overall accuracy. Changes in F1-score were minimal, ranging from a negligible 

increase (+0.01 for mistral-nemo) to a slight decrease (-0.06 for gemma2 ), 

resulting in an average difference of -0.02 (see Table 4.3). Mistral-nemo, the 

most effective model in RQ1, exhibited a marginal improvement, achieving an 

Finding 1. Mistral-nemo emerged as the most effective model in the 

zero-shot approach, with the Llama3 series delivering consistently strong 

results. 
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Finding 2. Most prompting strategies did not enhance the models’ ability 

to classify security-related requirements. However, the raw-instruction 

prompting strategy proved to be the most effective, with every model 

showing an increase in F1-score and an average F1-score improvement 

of +0.09. 

 

 
F1-score of 0.78. However, the improvements were insufficient to make auto- 

CoT a compelling strategy for enhancing classification effectiveness. 

 

Raw-inst. This technique had the most substantial impact on the effective- 

ness of the models. The F1-score differences ranged from +0.19 to +0.03, with 

an average of +0.09 (see Table 4.3). Apart from gemma, all models achieved 

accuracy comparable to or exceeding the most-accurate model from RQ1. Mis- 

tral emerged as the top performer under this strategy, achieving an F1-score of 

0.82, driven by high precision (0.77) and recall (0.88). GPT-4o-mini followed 

closely, with an F1-score of 0.81, supported by a precision of 0.70 and recall 

of 0.96. Mistral-small also demonstrated a strong balance between precision 

(0.82) and recall (0.79), resulting in an F1-score of 0.80. These results highlight 

raw-inst as a promising approach for improving model accuracy. 
 

 

 

4.3 

Comparison with State-of-the-art Approaches (RQ3) 

Mistral-nemo with the raw-inst technique, which proved to be the most 

effective on the SecReq dataset, was defined as our baseline (see Table 4.4). We 

compare the accuracy of the baseline model to two studies [7, 6] that utilized 

state-of-the-art ML models for the same task. 
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precision recall f1-score 

strategy model    

few-shot gemma 0.27 1.00 0.43 
 gemma2 0.43 1.00 0.60 
 gpt-4o-mini 0.49 0.99 0.65 
 llama3 0.39 1.00 0.56 
 llama3.1 0.36 1.00 0.53 
 llama3.2-vision 0.40 0.99 0.57 
 mistral 0.44 1.00 0.61 
 

 
auto-CoT 

mistral-nemo 
mistral-small 
gemma 

0.55 
0.50 
0.23 

0.95 
0.99 

1.00 

0.69 
0.67 
0.38 

 gemma2 0.45 0.98 0.61 
 gpt-4o-mini 0.54 0.98 0.70 
 llama3 0.56 0.96 0.71 
 llama3.1 0.52 0.96 0.68 
 llama3.2-vision 0.54 0.96 0.69 
 mistral 0.50 0.98 0.67 
 

 
raw-inst 

mistral-nemo 
mistral-small 
gemma 

0.71 
0.54 
0.40 

0.87 
0.99 

0.99 

0.78 
0.70 
0.57 

 gemma2 0.67 0.94 0.78 
 gpt-4o-mini 0.70 0.96 0.81 
 llama3 0.66 0.95 0.78 
 llama3.1 0.64 0.94 0.76 
 llama3.2-vision 0.63 0.95 0.76 
 mistral 0.77 0.88 0.82 
 mistral-nemo 0.82 0.79 0.80 
 mistral-small 0.68 0.94 0.79 

Table 4.2: Accuracy by prompting strategy and model 
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precision diff recall diff f1 diff 

strategy model    

few-shot gemma 0.04 0.00 0.05 
 gemma2 -0.08 0.03 -0.07 
 gpt-4o-mini -0.06 0.00 -0.05 
 llama3 -0.19 0.04 -0.16 
 llama3.1 -0.24 0.07 -0.20 
 llama3.2-vision -0.20 0.04 -0.16 
 mistral -0.08 0.03 -0.07 
 mistral-nemo -0.14 0.07 -0.08 

 mistral-small -0.05 0.01 -0.03  
Average -0.11 0.03 -0.09 

auto-CoT gemma 0.00 0.00 0.00 
 gemma2 -0.06 0.01 -0.06 
 gpt-4o-mini -0.01 -0.01 0.00 
 llama3 -0.02 0.00 -0.01 
 llama3.1 -0.08 0.03 -0.05 
 llama3.2-vision -0.06 0.01 -0.04 
 mistral -0.02 0.01 -0.01 

mistral-nemo 0.02 -0.01 0.01 

 mistral-small -0.01 0.01 0.00  
Average -0.03 0.01 -0.02 

raw-inst gemma 0.17 -0.01 0.19 
 gemma2 0.16 -0.03 0.11 
 gpt-4o-mini 0.15 -0.03 0.11 
 llama3 0.08 -0.01 0.06 
 llama3.1 0.04 0.01 0.03 
 llama3.2-vision 0.03 0.00 0.03 
 mistral 0.25 -0.09 0.14 
 mistral-nemo 0.13 -0.09 0.03 

 mistral-small 0.13 -0.04 0.09  
Average 0.13 -0.03 0.09 

 

 

Table 4.3: Difference in accuracy by prompting strategy compared to the 
baseline approach 
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model strategy precision recall f1-score 

mistral-nemo raw-inst 0.79 0.84 0.82 
gpt-4o-mini raw-inst 0.69 0.96 0.80 
mistral raw-inst 0.72 0.88 0.80 
gemma2 raw-inst 0.66 0.94 0.77 

llama3 raw-inst 0.63 0.94 0.76 

Table 4.4: 5 most accurate models and strategies for the SecReq dataset 
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Table 4.5 presents a comparative analysis of the precision, recall, and 

F1-score metrics from Studies 1 [7] and 2 [6] alongside the results of our study. 

For Studies 1 and 2, the table includes performance metrics under two distinct 

evaluation scenarios: 

– Intra-domain evaluation, where the models were trained and tested 

within the same specification domain, providing insights into their accu- 

racy in a controlled and consistent context. 

– Cross-domain evaluation, where the models were tested on data from 

different domains, showcasing their generalizability. Both the best-case 

and worst-case accuracy metrics are reported to capture the variability 

and robustness of the models across diverse datasets. 

This comparative approach highlights the strengths and limitations of 

each study, emphasizing how domain-specific or cross-domain factors influence 

the effectiveness of the classification models. 

Study 1, conducted by Knauss et al. [7], reported strong results, with F1- 

scores of 0.88 for the ePurse specification, 0.86 for the GP specification, and 

0.96 for the CPN specification for the intra-domain evaluation (see Table 4.5). 

However, F1-score dropped significantly for cross-domain evaluations. For the 

ePurse specification, the F1-score dropped to 0.58 in the best-case scenario and 

further decreased to 0.47 in the worst-case scenario. For the GP specification, 

the F1-score dropped to 0.57 and 0.23 in the best and worst-case scenarios, 

respectively. For the CPN specification, the F1-score fell sharply to 0.40 in the 

best-case scenario and 0.33 in the worst-case scenario 

Study 2, conducted by Li [6], achieved an F1-score of 0.82 for the ePurse 

specification, 0.74 for the GP specification and 0.73 for the CPN specification 

for the intra-domain evaluation (see Table 4.5). Similar to Study 1, F1- 

score generally dropped when evaluating models trained on other specification 

domains, i.e. cross-domain evaluations. However, for the ePurse specification, 

the F1-score increased to 0.88 in the best-case scenario and decreased to 0.65 

in the worst-case scenario. For the GP specification, the F1-score dropped to 

0.61 and 0.29 in the best and worst-case scenarios, respectively. For the CPN 

specification, the F1-score dropped to 0.63 in the best-case scenario and 0.6 in 

the worst-case scenario. 
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Specification Study Precision Recall F1-score 

Ours 0.98 0.77 0.86 
Study 1 (intra-domain) 0.83 0.93 0.88 
Study 1 (cross-domain best case) 0.72 0.48 0.58 

ePurse Study 1 (cross-domain worst case) 0.99 0.33 0.47 
Study 2 (intra-domain) 0.90 0.75 0.82 
Study 2 (cross-domain best case) 0.94 0.82 0.88 

Study 2 (cross-domain worst case) 0.95 0.49 0.65 

Ours 0.71 0.95 0.82 
Study 1 (intra-domain) 0.81 0.92 0.86 
Study 1 (cross-domain best case) 0.43 0.85 0.57 

GP Study 1 (cross-domain worst case) 0.29 0.19 0.23 
Study 2 (intra-domain) 0.79 0.70 0.74 
Study 2 (cross-domain best case) 0.50 0.78 0.61 

Study 2 (cross-domain worst case) 0.85 0.17 0.29 

Ours 0.68 0.83 0.75 

Study 1 (intra-domain) 0.98 0.95 0.96 
Study 1 (cross-domain best case) 0.29 0.65 0.40 

CPN Study 1 (cross-domain worst case) 0.23 0.54 0.33 
Study 2 (intra-domain) 0.76 0.71 0.73 
Study 2 (cross-domain best case) 0.52 0.78 0.63 

Study 2 (cross-domain worst case) 0.50 0.76 0.60 

 
Table 4.5: Comparison of our results with Studies 1 and 2 for intra-domain 
and cross-domain evaluation. 
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Study 1 achieved high scores when models were trained and tested 

on the same dataset, outperforming our approach in all specifications. The 

differences in F1-scores were small for the ePurse and GP specifications (0.02 

and 0.04, respectively), but considerable for the CPN specification (0.21). 

Their results dropped significantly in cross-domain evaluations, whereas our 

approach achieved higher F1-scores across all specifications by a large margin. 

The difference in F1-scores in the best-case scenario was 0.28 for the ePurse 

specification, 0.25 for the GP specification, and 0.35 for the CPN specification. 

Our approach also outperformed Study 2 in most cases. In the intra-domain 

evaluation scenario, the F1-score of our model surpassed theirs by 0.04 for 

the ePurse specification, 0.08 for the GP specification, and 0.02 for the CPN 

specification. In the cross-domain evaluation scenario, considering the best- 

case scenario, our model had a lower F1-score for the ePurse specification 

(0.86 compared to 0.88), but higher F1-scores for the GP specification (0.82 

compared to 0.61) and for the CPN specification (0.75 compared to 0.63). 

Overall, one major limitation of state-of-the-art techniques is that ML- 

based models often require retraining for each new dataset to adapt to its 

specific characteristics and requirements. This retraining process requires a 

substantial amount of manual effort to label the requirements in the new 

dataset, introducing additional time and cost burdens. Moreover, the need 

for domain expertise during the labeling process can further increase the 

complexity and expense. The reliance on fine-tuning also makes cross-domain 

approaches less flexible and scalable, as each dataset essentially demands a 

custom model configuration. 

In contrast, LLMs excel in this aspect, as they can operate effec- 

tively without fine-tuning. Leveraging their pre-trained knowledge, LLMs have 

demonstrated impressive results across various specifications, often surpassing 

traditional approaches in both accuracy for cross-domain evaluations and ease 

of deployment. This eliminates the need for dataset-specific training, signifi- 

cantly reducing the manual overhead and cost associated with traditional ML 

techniques. Furthermore, ML techniques are prone to overfitting to the train- 

ing data, which can lead to a steep decline in accuracy when models encounter 

datasets with varying structures or terminology. These limitations highlight the 

practical challenges of state-of-the-art techniques, reinforcing the advantages 

of LLMs in providing robust, cost-effective, and scalable solutions. 
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4.4 

Threats to Validity 

The validity of this study is influenced by several factors that could im- 

pact the reliability and generalizability of the findings. This section highlights 

potential threats to validity and reflects on the measures taken to mitigate 

them, as well as the limitations that remain. 

 

Internal validity. Internal validity relates to whether the results accurately 

reflect the performance of the evaluated models, independent of external 

influences. The study relied only on two datasets, PROMISE_exp and SecReq. 

We knowledge that limitations in the data quality and labeling could have 

introduced biases that affected the evaluation results. To mitigate such threat 

to the validity of our results, these datasets were selected due to their extensive 

use in prior research and their established reputation for robustness and 

reliability. Their use also supports the reproducibility of our findings, as they 

provide a common ground for comparison with other works in the literature. 

Moreover, requirements from both datasets were provided sequentially within 

the same session, potentially allowing the models to carry context or learn 

patterns from one dataset that might influence its performance on the other. 

Although responses were later isolated to evaluate performance on specific 

datasets, the sequential prompting approach may have inadvertently affected 

the model’s behavior during evaluation. Additionally, the study tested a limited 

number of prompting strategies.While these strategies were adequate for initial 

evaluation, the rapid development of LLMs has introduced an ever-growing 

pool of possible prompts and techniques that were not explored in this study. 

This limitation suggests that a broader variety of prompting strategies could 

yield different or more comprehensive insights into the models’ capabilities. 

Expanding the range of prompts considered in future research could mitigate 

this limitation and enhance the robustness of the evaluation. 

Finding 3. LLMs can serve as viable alternatives to task-specific state-of- 

the-art ML models. Our approach outperforms both state-of-the-art mod- 

els in terms of F1-score across most specifications and evaluation scenar- 

ios. It demonstrates more robust and less domain-dependent performance 

compared to prior studies, yielding results comparable to those of domain- 

specific models. 
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External validity. External validity pertains to the generalizability of the 

study’s findings to real-world contexts, beyond the specific datasets and 

experimental conditions used in this research. This study focused on two 

datasets, PROMISE_exp and SecReq, which represent a particular subset of 

software requirements, with a special emphasis on security-related ones. While 

these datasets are useful for evaluating the classification capabilities of LLMs in 

the context of security requirements, they may not fully capture the diversity of 

software requirements in broader domains or industries. Therefore, the results 

may not necessarily generalize to other types of NFRs from different domains. 

 

Construct validity. Construct validity focuses on whether the evaluation 

methods and metrics effectively measure the intended objectives. This study 

employed standard classification metrics such as precision, recall, and F1-score, 

which are well-established and widely accepted in similar research domains. 

However, the reliance on manual prompt engineering introduces a degree of 

subjectivity that could impact the consistency of results. Slight variations 

in prompt phrasing can lead to differences in performance. To address this 

limitation and ensure transparency, we have made all the constructed prompts 

publicly available. These prompts were carefully designed and refined based 

on initial model responses to maximize clarity and relevance while aligning 

with the study’s objectives. The availability of these prompts allows for 

systematic evaluation of how different phrasing or structures impact the 

performance of the models, contributing to a deeper understanding of the 

role of prompt engineering in such studies. Furthermore, the study did not 

explore fine-tuning the model on domain-specific data. This decision aligns 

with the growing interest in leveraging the out-of-the-box capabilities of LLMs. 

By avoiding fine-tuning, we make our methodology broadly applicable and 

resource-efficient, as fine-tuning can be computationally expensive and may 

limit generalizability. Additionally, our findings demonstrate that high-quality 

results can be achieved without fine-tuning. 



 

5 

Conclusion and Future work 

 

 

 

 
This study evaluates the efficacy of LLMs in classifying security-related 

software requirements, comparing their performance to that of state-of-the-art 

ML algorithms. Our study highlights several key implications and contribu- 

tions for developers, tool builders, and researchers, which are as follows: 

– LLMs are effective for security-related requirement classifica- 

tion: The zero-shot approach demonstrated that LLMs, particularly 

models like mistral-nemo, achieved high accuracy in identifying security- 

related requirements, with an F1-score of 0.77. This indicates that 

LLMs can perform the classification task effectively without the need 

for domain-specific training or significant overhead. 

– Prompt engineering can significantly improve model accuracy: 

The application of prompting strategies, particularly a hybrid approach 

combining Role Prompting and Instruction Prompting, referred to as 

raw-inst, led to a marked improvement in model accuracy. The raw-inst 

approach increased the F1-score by an average of +0.09, with models 

like Mistral achieving an F1-score of 0.82. This demonstrates the impact 

that refined prompting can have on enhancing classification outcomes, 

with minimal overhead. 

– LLMs can outperform traditional ML models: When compared to 

state-of-the-art ML models, Mistral-nemo outperformed the traditional 

J48 algorithm presented in [6] in almost all scenarios, and surpassed 

Knauss’s Bayesian classifier [7] in cross-dataset evaluations. 

The findings of this study open up numerous promising avenues for future 

research: 

– Use of the PROMISE+ dataset: Future work should incorporate the 

PROMISE+ dataset, developed by Silva et al. [33], which is an expansion 

of the PROMISE_exp dataset used in this study. This would enable a 

more robust evaluation of LLMs in comparison to traditional ML models, 

providing a broader and more representative sample of security-related 

software requirements. 
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– Comparison with ML models using both datasets: In this study, 

we compared LLMs to ML models using only the SecReq dataset. To 

strengthen this comparison, future work could involve reaching out to 

the authors of studies mentioned research question 3, and applying the 

same ML models to the PROMISE_exp. This would provide a more 

comprehensive evaluation. 

– Comparison with other studies evaluating LLMs for the same 

task: This study focused on comparing LLMs only with traditional ma- 

chine learning models from the literature. Future work could extend this 

comparison to include other studies that evaluate LLMs for requirements 

classification tasks, particularly fine-tuned versions of the BERT model, 

such as NoRBERT [17] and PRCBERT [18], which have demonstrated 

promising results in related scenarios. This would provide a broader per- 

spective on the effectiveness of LLMs in this domain. 

– Expansion of models and prompting strategy pool: The set of 

LLMs and prompting strategies used in this study was limited. Future 

research should explore a wider range of models and prompting strate- 

gies, including variations in phrasing, context, and detail. This would 

help identify the most effective approaches for security-related software 

requirements classification and take advantage of recent advancements 

in the field. 

– Real-time requirement classification: Building on the findings of our 

study, we plan to develop an integrated tool designed to classify require- 

ments specifications in real-time. This tool would seamlessly integrate 

with existing requirement specification platforms, such as JIRA, IBM 

DOORS, or other popular tools used by software development teams. 

The proposed tool could implement the best strategies identified in our 

findings, leveraging multiple LLMs based on the available computational 

resources. It would provide actionable insights directly within the envi- 

ronment where requirements are managed, making it easier to address 

critical security aspects during the early stages of development. Further- 

more, incorporating automated security requirement classification can 

assist assigning tasks to qualified team members. 

– Qualitative analysis of the datasets: Future work should incorporate 

a qualitative analysis of the requirements in both datasets. This analysis 

would allow researchers to identify the strengths and weaknesses of the 

LLMs’ classification accuracy. Additionally, it would help pinpoint areas 

where prompting strategies could be improved, ultimately enhancing 
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the overall accuracy. A more thorough qualitative evaluation of the 

requirements themselves could also provide insights into potential biases 

or gaps in the data, offering further avenues for refinement of the models 

and strategies used. 



6 

Data Availability 

 

 
 
 
 
 

 
All scripts and data used in this study are available in the replication 

package [8]. The replication package provide comprehensive instructions for 

setting up and reproducing the experiments. This includes: (1) the specific 

configurations, hyperparameters, and memory requirements for each LLM; (2) 

information on how our prompt was built; and (3) scripts for reproducing the 

evaluations, including comments to guide replication. 
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Appendix 

 

 
 
 
 
 
 

 

.1 

Prompting templates 

In this appendix, we present the placeholders used in the prompt strategy 

along with their corresponding values, as well as the templates utilized for each 

strategy. 

 

.1.1 

Placeholders 

– Target requirement: Requirement to be classified 

– Security requirement: Example requirement with the label sec 

– Non-security requirement: Example requirement with the label non- 

sec 

– Task specification: "Label it as a security-related requirement (sec) or 

non-security-related requirement (nonsec)." 

– Answer template specification: "Return the result as a JSON with 

the following format: {{label: sec or nonsec}}" 

– CoT promotion: "Let’s think step by step. Provide reasoning before 

giving the response." 

– Model instruction: "You are an expert in requirements engineering. 

You are tasked with the classification of requirements for a software 

project. You should consider 2 types of requirements: security-related 

requirement (sec) and non security-related requirements (nonsec)." 

– Task instruction: "Security-related requirements are those that explic- 

itly address the protection of a system’s data, resources, and functional- 

ities from unauthorized access, threats, or vulnerabilities. They encom- 

pass aspects such as user authentication, data encryption, access controls, 

and compliance with security standards. In contrast, non-security-related 

requirements pertain to the general functionality and performance of a 

system without specific considerations for security. These may include 

operational features, usability, and system performance metrics that do 

not inherently involve safeguarding against security risks." 
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.1.2 

Templates 

The exact placeholders values are described in Section .1.1. 
 

1. Zero-Shot: 

"For the given requirement: {target requirement}, {task specification}. 

{answer template specification}" 
 

 
2. Few-Shot: 

"user_1 = For the given requirement: {security requirement}, {task 

specification}. {answer template specification} 

response_1: {’label’: ’sec’} 

user_2 = For the given requirement: {non security requirement}, {task 

specification}. {answer template specification} 

response_2: {’label’: ’nonsec’} 

user_3 = For the given requirement: {target requirement}, {task speci- 

fication}. {answer template specification}. 

response_3: ... " 
 

 
3. Auto-CoT: 

"For the given requirement: {target requirement}, {task specification}. 

{CoT promotion}. {answer template specification}." 
 

 
4. Raw-Inst: 

"{model instruction}. {task instruction}. For the given requirement: {tar- 

get requirement}, {task specification}. {answer template specification}. 
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